Characteristics Analysis of Moon-Based Earth’s Outgoing Radiation Monitoring at the Top of Atmosphere
-
摘要: 针对月基辐射计的参数设计的不确定性,研究了基于月基辐射计观测地球大气层顶的辐射特性。该研究基于月基平台,将地球作为类点状辐射源进行观测,分析了月面不同位置观测特性、观测数据受观测几何影响以及观测采样特性。结果表明月球是一个变轨道倾角、变观测距离的轨道,一个轨道周期内可以完成对地球全球的充分采样,满足对地球完全时空覆盖观测的条件;在月面中心区域观测获得的大气层顶辐射能量较高;建议的传感器动态范围在5.50×10−2~8.50×10−2 W/m2之间,观测时间采样间隔不大于4 h,累积采样周期为一个轨道周期(27.3 d)。得到的结果为月基辐射计参数设计与观测参数确定提供了重要依据。Abstract: The characteristics of Moon-based Earth’s outgoing radiation at the top of the atmosphere were investigated for the parameter design of the Moon-based radiometer. Based on the single-point observation geometry for a Moon-based platform, this paper analyzed observational characteristics and data of different Moon-based platform’s positions on the lunar surface, and the observational sampling characteristics. The results indicate that the orbit of the Moon is with variable orbital inclination and observation distance to the Earth, and equipping a radiometer on the lunar surface can sample the whole Earth’s surface within one orbital period. In addition, the suggested dynamic range is from 5.50×10-2 to 8.50×10-2 W m-2, its temporal sampling interval is no more than 4 hours, and the accumulative sampling period is one orbital period (27.3 days). The above results provide an important basis for the design of the Moon-based radiometer.Highlights
● Single-point observation geometry was used in the Moon-based Earth’s outgoing radiation monitoring. ● The whole Earth’s surface can be sampled within one orbital period. ● Suggested dynamic range that is from 5.50×10−2 to 8.50×10−2 W m−2 was obtained. ● Suggested accumulative sampling period and temporal sampling interval was estimated. -
图 9 时间采样间隔对大气层顶地球辐射能量观测的影响[13]
Fig. 9 The effect of time sampling interval on the observation of outgoing radiation at the top of the atmosphere
-
[1] LOEB N G,DOELLING D R,WANG H,et al. Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product[J]. Journal of Climate,2017:1-5. [2] DOELLING D,HANEY C,BHATT R,et al. Geostationary visible imager calibration for the CERES SYN1deg edition 4 product[J]. Remote Sensing,2018,10:288. doi: 10.3390/rs10020288 [3] SU W,MINNIS P,LIANG L,et al. Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements[J]. Atmospheric Measurement Techniques,2020,13:429-443. doi: 10.5194/amt-13-429-2020 [4] SU W,LIANG L,DOELLING D R,et al. Determining the shortwave radiative flux from Earth polychromatic imaging camera[J]. Journal of Geophysical Research:Atmospheres,2018,123:479-491. [5] GUO H,LIU G,DING Y. Moon-based Earth observation:Scientific Concept and Potential Applications[J]. International Journal of Digital Earth,2017,11:546-557. [6] PALLÉ E,GOODE P R. The lunar terrestrial observatory:observing the Earth using photometers on the Moon’s surface[J]. Advances in Space Research,2009,43:1083-1089. doi: 10.1016/j.asr.2008.11.022 [7] YE H,ZHENG W,GUO H,et al. Effects of temporal sampling interval on the Moon-based Earth observation geometry[J]. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:4016-4029. doi: 10.1109/JSTARS.2020.3008521 [8] GUO H D, LIU G, DING Y X, et al. Moon-based Earth observation for large scale geoscience phenomena[C]// IGARSS 2016-2016 IEEE International Geoscience and Remote Sensing Symposium. [S. l. ]: IEEE, 2016. [9] 叶罕霖. 地球向外辐射能量的月基观测方法研究 [D]. 北京: 中国科学院大学, 2019.YE HANLIN 2019. Research on the Moon-based observation method of Earth's outgoing radiation energy [D]. Beijing: University of Chinese Academy of Sciences, 2019. [10] YE H,GUO H,LIU G,et al. Temporal sampling error analysis of the Earth’s outgoing radiation from a Moon-based platform[J]. International Journal of Remote Sensing,2019,40:6975-6992. doi: 10.1080/01431161.2019.1597306 [11] DUAN W T,HUANG S P,NIE,C W. Entrance pupil irradiance estimating model for a Moon-based Earth radiation observatory instrument[J]. Remote Sensing,2019:1-5. [12] DUAN W,HUANG S,NIE C. Conceptual design of a Moon-based Earth radiation observatory[J]. International Journal of Remote Sensing,2018,39:5834-5849. doi: 10.1080/01431161.2018.1512770 [13] REN Y Z,GUO H D,LIU G,et al. Simulation study of geometric characteristics and coverage for Moon-based Earth observation in the electro-optical region[J]. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10:2431-2440. doi: 10.1109/JSTARS.2017.2711061 [14] YE H,GUO H,LIU G,et al. Estimating the Earth’s Outgoing Longwave Radiation Measured from a Moon‐Based Platform[J]. Remote Sensing,2021,13:2201. doi: 10.3390/rs13112201 [15] NIE C,LIAO J,SHEN G,et al. Simulation of the land surface temperature from moon-based Earth observations[J]. Advances in Space Research,2019,63(2):826-839. doi: 10.1016/j.asr.2018.09.041 [16] GUO H D,YE H L,LIU G,et al. Error analysis of exterior orientation elements on geolocation for a Moon-based Earth observation optical sensor[J]. International Journal of Digital Earth,2018,13(11):1-19. [17] HUANG J,GUO H,LIU G,et al. 2020. Spatio-Temporal Characteristics for Moon-based Earth Observations[J]. Remote Sensing,2020,12:2848. doi: 10.3390/rs12172848 [18] DENG Y,GUO H,LIU G,et al. Global spatio-temporal sampling characteristics of Moon-based Earth observations[J]. International Journal of Remote Sensing,2021:1-5. -
计量
- 文章访问数: 7
- 被引次数: 0