Study on the Morphological Characteristics and Genesis of Dome Around Chang'e 5 Sampling Point
-
摘要: “嫦娥五号”采样点周缘区域分布有吕姆克山(Mons Rümker)和Mairan火山穹窿构造。通过“嫦娥”影像和地形数据对两类穹窿的形貌特征和形成因素展开对比研究,讨论穹窿的划分标准。共计圈定了吕姆克山13个月海穹窿和Mairan所在的4个非月海穹窿,并计算了穹窿形成过程中的岩浆流变学参数。研究结果表明:吕姆克山月海穹窿较为低缓,按照坡度和高度划分为吕姆克山第一类月海穹窿(坡度均< 5°,高度200~400 m)和吕姆克山第二类月海穹窿(坡度5°~7°,高度300~600 m),其中第二类较高陡的月海穹隆具有较高的粘度和更低的喷发速率。 Mairan非月海穹窿更为高陡,其岩浆喷发速率低于吕姆克山月海穹窿,岩浆粘度较高,流动性较差,喷发周期较长;在空间上,Mairan所在的4个非月海穹窿呈线性展布,其物质成分和形成时间相近,表明彼此关联的可能性很大。
-
关键词:
- "嫦娥五号"采样点周缘区域 /
- 火山穹窿构造 /
- 穹窿形貌特征 /
- 穹窿成因
Abstract: Mons Rümker and Mairan volcanic dome structure are distributed around Chang'e 5 sampling point, at present, there is a lack of comparative research on their morphological characteristics, genesis and classification standards. Therefore, we compare the morphological characteristics and formation factors of the two types of domes through Chang'e image and topographic data, and discuss the division criteria of domes. In this study, 13 lunar mare domes of Mons Rümker and 4 non-mare domes of Mairan were delineated, and the magma rheological parameters during the formation of the domes were calculated. The results show that the Rümker lunar mare domes is relatively low and flat, according to the slope and height, it is divided into Rümker type I lunar mare dome (slope < 5 °, height 200-400 m) and Rümker type II mare dome (slope 5 ° -7 °, height 300-600 m). Among them, the second kind of higher and steeper lunar sea dome has higher viscosity and lower eruption rate.Compared with the Rümker mare dome, the Mairan non-mare dome is higher and steeper, and its magma eruption rate is generally lower than mare domes, with high magma viscosity , poor fluidity and long eruption cycle;. Spatially, the four non lunar mare domes where Mairan is located are linearly distributed and their material composition and formation time are similar, indicating that they are highly related to each other.Highlights● Using Chang'e image data, 17 volcanic domes around Chang'e 5 sampling point are delineated, of which the newly discovered dome is No. 11. ● Based on the morphological and rheological characteristics, the characteristics of Rümker mare domes and Mairan non- mare domes around Chang'e 5 sampling point are compared. ● The division of lunar mare domes and non-mare domes should be determined in combination with its morphological parameters, geographical location, rheological parameters, material composition and other parameters. -
图 1 风暴洋东北部穹窿LRO_WAC影像特征和Clemetine UVVIS 假彩色合成图特征
注:1-Mairan中央穹顶,2-Mairan T穹顶,3-Mairan 南部穹顶,4-Mairan西北部穹顶(a)吕姆克山穹窿LRO_WAC影像特征 (b)吕姆克山穹窿Clemetine UVVIS 假彩色合成图特征(c)Mairan穹窿LRO_WAC影像特征1 (d)Mairan穹窿Clemetine UVVIS 假彩色合成图1特征 (e)Mairan穹窿LRO_WAC影像特征2 (f)Mairan穹窿Clemetine UVVIS 假彩色合成图特征2
Fig. 1 Northern Oceanus Procellarum domes CE2 LRO_ WAC and Clemetine UVVIS false color composite image features
表 1 月球喷出型穹窿划分表
Table 1 Division of lunar extrusive domes
类别 R415/R750 坡度/(°) 直径/km 体积/km3 喷发速率/(m3·s–1) 喷发时间/a年 粘度/(Pa·s) A >0.64 0.3~1 5~13 <3 100~620 0.05~0.3 102~103 B1 0.55~0.64 2~5.4 6~15 5~32 30~200 3~18 106~107 B2 0.55~0.64 1.3~1.9 8~15 2~21 80~170 0.7~1.2 104~105 C1 0.55~0.6 0.6~1.8 13~28 7~50 200~2 000 0.06~7 104~105 C2 0.6~0.64 1~2.5 8~17 4~17 100~300 0.5~7 104~105 D >0.64 1.3~1.5 ≈25 40~67 E1 0.58~0.62 2~4 <6 0.5~0.8 ≈25 1.0~1.7 105~106 E2 0.58~0.62 <2 <6 0.5~0.8 100~300 0.05~0.3 103 G 0.55~0.6 >6 7~30 20~400 48~120 12.8~42 108~109 H1 0.62~0.68 <5 <5 <2 10~100 ≈2 ≈106 H2 0.62~0.68 2~5 5~15 1~43 10~100 ≈4 ≈106 H3 0.62~0.68 5~9 5~13 7~37 10~100 ≈10 ≈107 注:根据文献[13]修改。 表 2 本研究中所使用的数据[14--15]
Table 2 Data used in this study[14--15]
数据名称 探测任务 空间分辨率/
(m·pixel–1)本文作用 LRO WAC(GLD100) 月球勘测轨道飞行器(Lunar Reconnaissance Orbiter,LRO),2008年 100 确定穹窿的边界和位置 CE2_TMap2015_50m 的
DEM数据产品嫦娥二号,2010年 50 提取形貌参数 CE2_TMap2015_50 m
的DOM数据产品嫦娥二号,2010年 50 给WAC图像、UVVIS图像几何配准提供基准底图 Clementine UVVIS假彩色
合成图像“克莱门汀号”( Clementine),1994年 200 做物质成分参考 参数名称 参数定义 提取方法 其它说明 穹窿基底面积A/km2 轮廓线以内穹窿的表面面积 由轮廓限定的像素来确定 假设穹窿为标准圆形
(见图2)直径D/m 穹体基底圆所在圆周过圆心任意两点的连线 D = 2 $ \sqrt{A/\mathrm{\pi }} $ 高度H/m 穹窿顶点与穹窿轮廓中最低点的差值 通过裁剪每个穹窿的DEM数据,提取穹窿高程数据,将最高点与最低点高程作差 坡度Slope/(°) 穹窿高度与穹体基底直径一半比值的反函数 Slope=tan−1( 2H/D ) g为月球重力加速度,取1.63 m/s2;cf2为熔岩流动有效真厚度;
κ为熔岩的热扩散率,κ ≈ 10−6 m2/s;SV为穹窿表面体积屈服强度τ/Pa 抵抗微量塑性变形的应力 τ=$ \frac{0.323{H}^{2}\rho g}{D/2} $ 塑性粘度
η(τ)/(Pa·S)当流体微团内微团之间发生相对滑移时,内部产生的剪切应力(切向阻力) η(τ) = 6 × 10−4 τ 2.4 喷发速率
E(m3.s-1)从喷口喷出单位体积岩浆所花的时间 E=$ \frac{{0.323}^{1/2}300\kappa {(\frac{D}{2})}^{2}}{{0.65}^{5/2}{{c}_{\mathrm{f}}}^{2}H} $ 喷发持续
时间Te (s)熔岩喷发持续时间 Te = $ \frac{SV}{E} $ 注:表中公式引自文献[17-18]。 表 4 研究区穹窿形貌学参数和流变学特征参数提取结果
Table 4 Extraction results of dome morphological parameters and rheological characteristic parameters in the study area
穹窿
编号经度/
(°W)纬度/
(°N)基底面积A/
km2穹窿高
度H/m穹窿直径D/
km坡度S/
(°)表面体积SV/
km3屈服
强度τ/Pa塑性粘度
η(τ)/(Pa·s)喷发速率
E/(m3·s-1)喷发持续
时间Te/ s其它
说明1 47.7 41.4 146.9 902.2 13.7 7.5 60.6 1.3×105 1.0×109 36.0 1.7×109
非月海
穹窿2 48.4 41.8 48.2 845.4 7.8 12.2 20.4 1.9×105 2.9×109 12.6 1.6×109 3 47.7 40.8 22.6 492.1 5.4 10.4 3.5 9.5×104 5.3×108 10.2 3.4×108 4 49.9 43.7 11.6 266.3 3.8 7.9 2.3 3.9×104 6.2×107 9.7 2.4×108 5 58.4 39.9 54.0 371.9 8.3 5.1 18.1 3.5×104 4.9×107 32.1 5.6×108
月海穹窿6 58.7 40.1 61.1 318.5 8.8 4.1 10.9 2.4×104 2.0×107 42.5 2.6×108 7 58.4 39.9 82.9 300.4 10.3 3.3 11.5 1.8×104 1.0×107 61.1 1.9×108 8 58.2 40.1 75.2 324.5 9.8 3.8 18.7 2.3×104 1.7×107 51.3 3.6×108 9 58.5 40.3 80.0 581.3 10.1 6.6 31.0 7.1×104 2.6×108 30.5 1.0×109 10 58.8 40.6 227.7 493.6 17.0 3.3 86.6 3.0×104 3.4×107 102.1 8.5×108 11 59.5 40.8 63.5 281.8 9.0 3.6 15.2 1.9×104 1.1×107 49.9 3.0×108 12 59.5 41.1 30.4 390.3 6.2 7.2 9.7 5.2×104 1.2×108 17.2 5.7×108 13 59.3 41.3 25.2 321.5 5.7 6.5 6.9 3.8×104 6.0×107 17.4 4.0×108 14 58.7 41.1 97.2 363.0 11.1 3.7 28.3 2.5×104 2.1×107 59.2 4.8×108 15 58.5 41.4 74.9 457.1 9.8 5.3 58.6 4.5×104 8.9×107 36.3 1.6E+09 16 57.9 41.2 95.9 305.7 11.0 3.2 25.7 1.8×104 9.5×106 69.4 3.7×108 17 57.4 40.8 34.7 224.2 6.7 3.9 7.8 1.6×104 7.3×106 34.3 2.3×108 -
[1] HEAD J W,GIFFORD A. Lunar mare domes:classification and modes of origin[J]. The moon and the planets,1980,22(2):235-258. doi: 10.1007/BF00898434 [2] HEAD J W,McCORD T B. Imbrian-age highland volcanism on the Moon:the Gruithuisen and Mairan domes[J]. Science,1978,199(4336):1433-1436. doi: 10.1126/science.199.4336.1433 [3] 何姝珺. 月表静海地区地质构造分布特征及其演化分析[D]. 北京: 中国地质大学(北京), 2014.HE S J. Distribution characteristics and evolution analysis of geological structures in the l unar surface Jinghai area [D]. China University of Geosciences (Beijing), 2014. [4] KUSUMA K N,SEBASTIAN N,MURTY S V S. Geochemical and mineralogical analysis of Gruithuisen region on Moon using M3 and DIVINER images[J]. Planetary and Space Science,2012,67(1):46-56. doi: 10.1016/j.pss.2012.02.012 [5] WHITFORD-STARK,JAMES L,HEAD J W. The Procellarum volcanic complexes-contrasting styles of volcanism[J]. Lunar and Planetary Science Conference Proceedings,1977:2705-2724. [6] WEITZ,CATHERINE M,HEAD III,et al. Spectral properties of the Marius Hills volcanic complex and implications for the formation of lunar domes and cones[J]. Journal of Geophysical Research:Planets,1999,104(E8):18933-18956. doi: 10.1029/1998JE000630 [7] ZHAO J,XIAO L,QIAO L,et al. The Mons Rümker volcanic complex of the Moon:a candidate landing site for the Chang'E-5 mission[J]. Journal of Geophysical Research:Planets,2017,122(7):1419-1442. [8] SCOTT D H,EGGLETON R E SMITH E I. Geologic map of the Rumker quadrangle of the Moon[J]. US Geological Survey Report,1973:805. [9] GLOTCH, TIMOTHY D , LUCEY P, et al. The Mairan domes: silicic volcanic constructs on the Moon[J]. Geophysical Research Letters, 2011, 38(21). [10] LUCEY,PAUL G,BLEWETT,et al. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet‐visible images[J]. Journal of Geophysical Research:Planets,2000,105(E8):20297-20305. doi: 10.1029/1999JE001117 [11] WÖHLER,CHRIETIAN,LENA R et al. A combined spectrophotometric and morphometric study of the lunar mare dome fields near Cauchy,Arago,Hortensius,and Milichius[J]. Icarus,2006,183(2):237-264. doi: 10.1016/j.icarus.2006.03.003 [12] WÖHLER,CHRIETIAN,LENA R,et al. Formation of lunar mare domes along crustal fractures:Rheologic conditions,dimensions of feeder dikes,and the role of magma evolution[J]. Icarus,2007,189(2):279-307. doi: 10.1016/j.icarus.2007.01.011 [13] LENA R, WÖHLER C, PHILLIPS J, et al. Lunar domes: properties and formation processes[M]. Italia: Springer Science & Business Media, 2013: 59-65. [14] 李春来,刘建军,任鑫,等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报(信息科学版),2018,43(4):485-495.LI C L,LIU J,REN X,et al. Full month high-precision terrain reconstruction based on Chang'e-2 stereo image[J]. Journal of Wuhan University (Information Science Edition),2018,43(4):485-495. [15] REN X,LIU J,LI C,et al. A global adjustment method for photogrammetric processing of Chang’E-2 stereo images[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(9):6832-6843. doi: 10.1109/TGRS.2019.2908813 [16] CHEN Y,HUANG Q,ZHAO J,et al. Unsupervised machine learning on domes in the lunar gardner region:implications for dome classification and local magmatic activities on the Moon[J]. Remote Sensing,2021,13(5):845. doi: 10.3390/rs13050845 [17] LIONE W,HEAD J W,et al. Lunar gruithuisen and mairan domes:rheology and mode of emplacement[J]. Journal of Geophysical Research:Planets,2003,108(E2):5012. [18] BLAKE S. Viscoplastic models of lava domes[M]//Lava Flows and Domes. Berlin: Springer, 1990. [19] BOYCE J M,GIGUERE T,MOUGINIS-MARK P,et al. Geology of Mairan middle dome:its implication to silicic volcanism on the Moon[J]. Planetary and Space Science,2018,162:62-72. doi: 10.1016/j.pss.2017.12.009 [20] WIECZOREK M A,ZUBER M T,PHILLIPS R J,et al. The role of magma buoyancy on the eruption of lunar basalts[J]. Earth and Planetary Science Letters,2001,185(1-2):71-83. doi: 10.1016/S0012-821X(00)00355-1 [21] WAGNER R,HEAD J,WOLF U,et al. Stratigraphic sequence and ages of volcanic units in the Gruithuisen region of the Moon[J]. Journal of Geophysical Research:Planets,2002,107(E11):14-1-14-15. -
计量
- 文章访问数: 112
- 被引次数: 0