中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种线阵推扫式行星遥感影像摄影测量快速处理方法

耿迅 徐青

耿迅, 徐青. 一种线阵推扫式行星遥感影像摄影测量快速处理方法[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210002
引用本文: 耿迅, 徐青. 一种线阵推扫式行星遥感影像摄影测量快速处理方法[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210002
GENG Xun, XU Qing. A Fast Photogrammetric Processing Method for Linear Pushbroom Planetary Remote Sensing Images[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210002
Citation: GENG Xun, XU Qing. A Fast Photogrammetric Processing Method for Linear Pushbroom Planetary Remote Sensing Images[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210002

一种线阵推扫式行星遥感影像摄影测量快速处理方法

doi: 10.15982/j.issn.2096-9287.2022.20210002
基金项目: 国家自然科学基金(41401533);河南省智慧中原地理信息技术协同创新中心项目资助(2020C004)
详细信息
    作者简介:

    耿迅(1982– ),男,副教授,硕士生导师,主要研究方向:行星遥感制图、航空航天影像高精度几何定位。通讯地址:郑州市河南大学郑州龙子湖校区(450000)E-mail:gengxun@henu.edu.cn

  • ● We developed a geometric rectification method for linear pushbroom planetary remote sensing images based on a fast back projection algorithm. ● The tie points are acquired through image matching on approximate orthophotos, which helps to improve the automatic processing capability in establishing control network of linear pushbroom planetary remote sensing images. ● The digital orthophoto maps and digital elevation models for the landing site of Chang’E-4 and the candidate landing site of Mars 2020 were derived, which demonstrated the feasibility of the developed technical process.
  • 中图分类号: P237

A Fast Photogrammetric Processing Method for Linear Pushbroom Planetary Remote Sensing Images

  • 摘要: 对地外天体表面的遥感影像进行摄影测量处理是制作行星制图产品的主要技术途径。然而,现有行星摄影测量方法在处理长条带线阵推扫式遥感影像时存在效率较低与适用性有限等问题。设计了基于快速几何纠正的线阵推扫式行星遥感影像的摄影测量处理方法并自主研发了相应的软件模块,在建立线阵影像严密几何模型的基础上,利用快速反投影算法进行几何纠正,并开展多线程程序设计进一步提升正射影像图生成效率。首先在快速几何纠正生成的近似正射影像上进行匹配获取连接点,然后再利用严密几何模型将连接点转换至原始影像空间,有效地解决了大数据量线阵推扫式行星遥感影像的连接点控制网构建问题。利用月球侦察轨道器NAC影像与火星快车HRSC影像开展试验验证,处理生成了“嫦娥四号”(Chang'E-4)着陆区与Mars 2020预选着陆区局部区域的正射影像图与数字高程模型,与USGS ISIS软件相比,所提方法显著提升了线阵推扫式行星遥感影像的处理效率。
    Highlights
    ● We developed a geometric rectification method for linear pushbroom planetary remote sensing images based on a fast back projection algorithm. ● The tie points are acquired through image matching on approximate orthophotos, which helps to improve the automatic processing capability in establishing control network of linear pushbroom planetary remote sensing images. ● The digital orthophoto maps and digital elevation models for the landing site of Chang’E-4 and the candidate landing site of Mars 2020 were derived, which demonstrated the feasibility of the developed technical process.
  • 图  1  基于快速几何纠正的行星遥感影像摄影测量处理流程图

    Fig.  1  Flowchart of the photogrammetric processing of planetary remote sensing images based on fast geometric rectification

    图  2  线阵推扫式影像地面点反投影示意图

    Fig.  2  Illustration of back projection of linear pushbroom images

    图  3  MEX HRSC影像连接点分布示意图

    Fig.  3  Illustration of tie points distribution of MEX HRSC images

    图  4  LRO NAC影像连接点分布示意图

    Fig.  4  Illustration of tie points distribution of LRO NAC images

    图  5  LRO NAC影像光束法平差后像方残差分布图

    Fig.  5  Image residuals of the bundle adjustment for LRO NAC images

    图  6  MEX HRSC影像影像光束法平差后像方残差分布图

    Fig.  6  Image residuals of the bundle adjustment for MEX HRSC images

    图  7  LRO NAC影像光束法平差连接点几何定位精度

    Fig.  7  The posterior geometric accuracy of tie points for LRO NAC images

    图  8  MEX HRSC影像光束法平差连接点几何定位精度

    Fig.  8  The posterior geometric accuracy of tie points for MEX HRSC images

    图  9  LRO NAC立体影像自动提取DEM结果

    Fig.  9  The DEM results of LRO NAC stereo images

    图  10  MEX HRSC立体影像自动提取DEM结果

    Fig.  10  The DEM results of MEX HRSC stereo images

    图  11  “嫦娥四号”着陆区LRO NAC正射影像图

    Fig.  11  The digital orthophoto map of LRO NAC images for the landing site of Chang’E-4

    图  12  Mars 2020预选着陆区MEX HRSC正射影像图

    Fig.  12  The digital orthophoto map of MEX HRSC images for the candidate landing site of Mars 2020

    表  1  测试影像基本信息

    Table  1  Basic information of the test images

    相机影像获取时间分辨率/m影像尺寸/像素
    LRO NACM1303619844LE2019-02-01T00:22:590.885 064×52 224
    M1303619844RE2019-02-01T00:22:590.875 064×52 224
    M1303640934LE2019-02-01T06:14:291.185 064×52 224
    M1303640934RE2019-02-01T06:14:291.135 064×52 224
    MEX HRSCh7289 nd22009-09-08T00:05:3714.015 176×21 168
    h7289 s122009-09-08T00:05:0614.805 176×21 168
    h7289 s222009-09-08T00:06:0815.065 176×21 392
    h7289 p122009-09-08T00:05:1721.522 584×10 584
    h7289 p222009-09-08T00:05:5821.762 584×10 640
    下载: 导出CSV

    表  2  光束法平差影像残差值

    Table  2  Image residuals of bundle adjustment results

    试验数据影像误差/像素
    行方向列方向
    LRO NAC影像
    (Chang'E-4着陆区)
    M1303619844LE0.360.07
    M1303619844RE0.220.09
    M1303640934LE0.460.06
    M1303640934RE0.320.08
    MEX HRSC影像
    (Mars 2020预选着陆区)
    h7289 nd20.230.26
    h7289 s120.170.39
    h7289 s220.140.27
    h7289 p120.240.35
    h7289 p220.210.41
    下载: 导出CSV
  • [1] 徐青, 邢帅, 周杨, 等. 深空行星形貌测绘的理论技术与方法[M]. 北京: 科学出版社, 2016.
    [2] 徐青,耿迅,蓝朝桢,等. 火星地形测绘研究综述[J]. 深空探测学报(中英文),2014,1(1):28-35.

    XU Q,GENG X,LAN C Z,et al. Review of Mars topographic mapping[J]. Journal of Deep Space Exploration,2014,1(1):28-35.
    [3] FERGASON R L,KIRK R L,CUSHING G,et al. Analysis of local slopes at the InSight landing site on Mars[J]. Space Science Review,2017,211:109-133. doi:  10.1007/s11214-016-0292-x
    [4] GOLOMBEK M P,GRANT J A,PARKER T J,et al. Selection of the Mars exploration rover landing sites[J]. Journal of Geophysical Research,Planets,2003,108:E12.
    [5] 耿迅. 火星形貌摄影测量技术研究[J]. 测绘学报,2015,44(8):944. doi:  10.11947/j.AGCS.2015.20150073

    GENG X. Research on photogrammetric processing for Mars topographic mapping[J]. Acta Geodaetica et Cartographica Sinica,2015,44(8):944. doi:  10.11947/j.AGCS.2015.20150073
    [6] 邸凯昌,刘斌,刘召芹,等. 月球遥感制图回顾与展望[J]. 遥感学报,2016,20(5):1230-1242.

    DI K C,LIU B,LIU Z Q,et al. Review and prospect of lunar mapping using remote sensing data[J]. Journal of Remote Sensing,2016,20(5):1230-1242.
    [7] 李春来,刘建军,任鑫,等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报 信息科学版,2018,43(4):485-495.

    LI C L,LIU J J,REN X,et al. Lunar global high-precision terrain reconstruction based on Chang'e-2 stereo images[J]. Geomatics and Information Science of Wuhan University,2018,43(4):485-495.
    [8] KIRK R L,KRAUS E H,ROSIEK R M,et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images:meter-scale slopes of candidate Phoenix landing sites[J]. Journal of Geophysical Research,Planets,2008,113:5578-5579.
    [9] DI K C,LIU Y,LIU B,et al. A self-calibration bundle adjustment method for photogrammetric processing of Chang’E-2 stereo lunar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2014,52(9):5432-5442. doi:  10.1109/TGRS.2013.2288932
    [10] LI R X,HWANGBO J,CHEN Y H,et al. Rigorous photogrammetric processing of HiRISE stereo imagery for Mars topographic mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(7):2558-2572. doi:  10.1109/TGRS.2011.2107522
    [11] GWINNER K,JAUMANN R,HAUBER E,et al. The High Resolution Stereo Camera (HRSC) of Mars express and its approach to science analysis and mapping for Mars and its satellites[J]. Planetery and Space Science,2016,126:93-138. doi:  10.1016/j.pss.2016.02.014
    [12] KIRK R L, KRAUS E H, EDMUNDSON K, et al. Community tools for cartographic and photogrammetric processing of Mars express HRSC images[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Informaiton Sciences—ISPRS Archives. Hongkong, China: [s. n. ], 2017.
    [13] EDMUNDSON K L, COOK D A, THOMAS O H, et al. Jigsaw: the ISIS3 bundle adjustment for extraterrestrial photogrammetry[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Informaiton Sciences—ISPRS Archives. Melbourne, Australia: [s. n. ], 2012.
    [14] GENG X,XU Q,XING S,et al. A robust ground‐to‐image transformation algorithm and its applications in the geometric processing of linear pushbroom images[J]. Earth and Space Science,2019,6(10):1805-1830. doi:  10.1029/2019EA000646
    [15] ACTON C, BACHMAN N, SEMENOV B, et al. SPICE tools supporting planetary remote sensing[C]// International Archives of the Photogrammetry, Remote Sensing and Spatial Informaiton Sciences—ISPRS Archives. Prague, Czech Public: [s. n. ], 2016
    [16] BEYER R A,ALEXANDROV O,MCMICHAEL S. The ames stereo pipeline:NASA's open source software for deriving and processing terrain data[J]. Earth and Space Science,2018(5):537-548.
    [17] GENG X,XU Q,XING S,et al. A generic pushbroom sensor model for planetary photogrammetry[J]. Earth and Space Science,2020,7(5):1-9.
    [18] GENG X,XU Q,LAN C Z,et al. Orthorectification of planetary linear pushbroom images based on an improved back projection algorithm[J]. IEEE Geosci. Remote Sens. Lett.,2019,16(6):854-858. doi:  10.1109/LGRS.2018.2885086
    [19] WANG M,HU F,LI J,et al. A fast approach to best scanline search of airborne linear pushbroom images[J]. Photogramm. Eng. Remote. Sens.,2009,75(9):1059-1067. doi:  10.14358/PERS.75.9.1059
  • [1] 徐青, 耿迅.  地外天体形貌测绘研究现状与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2022.20210162
    [2] 孟占峰, 高珊, 彭兢.  基于轨道任务几何的“嫦娥五号”采样区选择 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210023
    [3] 于志坚, 李海涛.  月球与行星探测测控系统建设与发展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2021.20210125
    [4] 贾瑛卓, 覃朗, 徐琳, 马涛, 杨蔚, 惠鹤九, 严俊, 邹永廖.  月球水冰探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191108009
    [5] 郑为民, 张娟, 徐志骏, 刘磊, 童力, 张秀忠.  实时VLBI处理机技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20200027
    [6] 张天翼, 彭松, 田鹤.  无人星球车非几何障碍感知研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200034
    [7] 张大鹏, 李治泽, 王奕迪, 郑伟.  X射线脉冲星动态信号处理方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.004
    [8] 路伟涛, 谢剑锋, 任天鹏, 韩松涛.  一种基于探测器下行信号融合处理的无线电干涉测量方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.03.004
    [9] 徐侃彦, 马玲玲, 印红, 张轶男.  火星无人探测与行星保护 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.002
    [10] 徐侃彦, 马玲玲, 印红, 张秦, 邹乐洋.  载人火星探测的行星保护 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.004
    [11] 路伟涛, 任天鹏, 陈略, 韩松涛, 王美.  一种基于小波相关滤波的无线电干涉测量处理方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.012
    [12] 杨成伟, 郑建华.  脉冲星X射线数据处理与分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.3.003
    [13] 范明意, 吕鹏.  环绕器次表层探测雷达实时处理技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.011
    [14] 杨轩, 鄢建国, 叶茂, 金炜桐, 曲春凯, 刘素艳.  对一种月球与火星探测多程微波测量链路定轨定位的数值模拟初步分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.02.007
    [15] 关昭, 乔卫东, 杨建峰, 薛彬, 陶金有.  火星多光谱相机的地面几何标定研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.009
    [16] 程宇峰, 润一, 王密.  深空探测光学导航敏感器在轨几何定标方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.03.006
    [17] 何胜茂, 彭超, 高扬.  从日地系统L2出发借力月球飞越近地小行星 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.003
    [18] 徐青, 王栋, 邢帅, 蓝朝桢.  小行星形貌测绘与表征技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.007
    [19] 高朝辉, 童科伟, 时剑波, 申麟.  载人火星和小行星探测任务初步分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.002
    [20] 徐青, 耿迅, 蓝朝祯, 邢帅.  火星地形测绘研究综述 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2022-02-18
  • 网络出版日期:  2022-05-31

一种线阵推扫式行星遥感影像摄影测量快速处理方法

doi: 10.15982/j.issn.2096-9287.2022.20210002
    基金项目:  国家自然科学基金(41401533);河南省智慧中原地理信息技术协同创新中心项目资助(2020C004)
    作者简介:

    耿迅(1982– ),男,副教授,硕士生导师,主要研究方向:行星遥感制图、航空航天影像高精度几何定位。通讯地址:郑州市河南大学郑州龙子湖校区(450000)E-mail:gengxun@henu.edu.cn

  • ● We developed a geometric rectification method for linear pushbroom planetary remote sensing images based on a fast back projection algorithm. ● The tie points are acquired through image matching on approximate orthophotos, which helps to improve the automatic processing capability in establishing control network of linear pushbroom planetary remote sensing images. ● The digital orthophoto maps and digital elevation models for the landing site of Chang’E-4 and the candidate landing site of Mars 2020 were derived, which demonstrated the feasibility of the developed technical process.
  • 中图分类号: P237

摘要: 对地外天体表面的遥感影像进行摄影测量处理是制作行星制图产品的主要技术途径。然而,现有行星摄影测量方法在处理长条带线阵推扫式遥感影像时存在效率较低与适用性有限等问题。设计了基于快速几何纠正的线阵推扫式行星遥感影像的摄影测量处理方法并自主研发了相应的软件模块,在建立线阵影像严密几何模型的基础上,利用快速反投影算法进行几何纠正,并开展多线程程序设计进一步提升正射影像图生成效率。首先在快速几何纠正生成的近似正射影像上进行匹配获取连接点,然后再利用严密几何模型将连接点转换至原始影像空间,有效地解决了大数据量线阵推扫式行星遥感影像的连接点控制网构建问题。利用月球侦察轨道器NAC影像与火星快车HRSC影像开展试验验证,处理生成了“嫦娥四号”(Chang'E-4)着陆区与Mars 2020预选着陆区局部区域的正射影像图与数字高程模型,与USGS ISIS软件相比,所提方法显著提升了线阵推扫式行星遥感影像的处理效率。

注释:
1)  ● We developed a geometric rectification method for linear pushbroom planetary remote sensing images based on a fast back projection algorithm. ● The tie points are acquired through image matching on approximate orthophotos, which helps to improve the automatic processing capability in establishing control network of linear pushbroom planetary remote sensing images. ● The digital orthophoto maps and digital elevation models for the landing site of Chang’E-4 and the candidate landing site of Mars 2020 were derived, which demonstrated the feasibility of the developed technical process.

English Abstract

耿迅, 徐青. 一种线阵推扫式行星遥感影像摄影测量快速处理方法[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210002
引用本文: 耿迅, 徐青. 一种线阵推扫式行星遥感影像摄影测量快速处理方法[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20210002
GENG Xun, XU Qing. A Fast Photogrammetric Processing Method for Linear Pushbroom Planetary Remote Sensing Images[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210002
Citation: GENG Xun, XU Qing. A Fast Photogrammetric Processing Method for Linear Pushbroom Planetary Remote Sensing Images[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20210002
参考文献 (19)

返回顶部

目录

    /

    返回文章
    返回