中文核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间引力波探测器轨道确定及仿真分析

李康康 谷德峰 安子聪 宋佳凝 朱炬波

李康康, 谷德峰, 安子聪, 宋佳凝, 朱炬波. 空间引力波探测器轨道确定及仿真分析[J]. 深空探测学报(中英文), 2021, 8(2): 182-189. doi: 10.15982/j.issn.2096-9287.2021.20200081
引用本文: 李康康, 谷德峰, 安子聪, 宋佳凝, 朱炬波. 空间引力波探测器轨道确定及仿真分析[J]. 深空探测学报(中英文), 2021, 8(2): 182-189. doi: 10.15982/j.issn.2096-9287.2021.20200081
LI Kangkang, GU Defeng, AN Zicong, SONG Jianing, ZHU Jubo. Simulation and Analysis of Orbit Determination of Space Gravitational Wave Detector[J]. Journal of Deep Space Exploration, 2021, 8(2): 182-189. doi: 10.15982/j.issn.2096-9287.2021.20200081
Citation: LI Kangkang, GU Defeng, AN Zicong, SONG Jianing, ZHU Jubo. Simulation and Analysis of Orbit Determination of Space Gravitational Wave Detector[J]. Journal of Deep Space Exploration, 2021, 8(2): 182-189. doi: 10.15982/j.issn.2096-9287.2021.20200081

空间引力波探测器轨道确定及仿真分析

doi: 10.15982/j.issn.2096-9287.2021.20200081
基金项目: 国家自然科学基金资助项目(41874028)
详细信息
    作者简介:

    李康康(1994– ),男,硕士生,主要研究方向:卫星轨道确定。通讯地址:广东省珠海市香洲区中山大学(珠海校区)(519082)电话:15056790826 E-mail:likk6@mail2.sysu.edu.cn

    通讯作者:

    谷德峰(1980– ),男,博士,教授,主要研究方向:卫星精密跟踪测量数据处理、轨道确定和试验评估等。本文通讯作者。通讯地址:广东省珠海市香洲区中山大学(珠海校区)(519082)电话:13787129336 E-mail:gudefeng@mail.sysu.edu.cn

  • ● Increasing the tacking arc length can effectively improve the orbit determination precision. Moreover,the position accuracy of the estimated detector reaches 92m when the tracking arc is set to be 20 d. ● The combined ranging/Doppler orbit determination method gains a growth of 32.23% and 99.52% estimating position accuracy,compared with the only ranging and only Doppler orbit determination strategies,respectively. ● By utilizing multiple deep space networks,the common viewing rate of multi stations increases markedly,which is conducive to improve the accuracy and the convergence of the orbit determination.
  • 中图分类号: V476.4

Simulation and Analysis of Orbit Determination of Space Gravitational Wave Detector

  • 摘要: 针对空间引力波探测器的精密轨道确定问题,选取LISA(Laser Interferometer Space Antenna)作为研究对象,建立了探测器的目标仿真环境,模拟生成美国深空网(Deep Space Network,DSN)和中国深空网(China Deep Space Network,CDSN)在不同测站下的测距测速数据,采用非线性加权最小二乘(Weighted Least Squares,WLS)和蒙特卡洛方法(Monte Carlo,MC)分析跟踪弧长、测轨数据类型、测站数量及其分布等因素对LISA探测器定轨精度的影响。仿真结果表明:①增加测站的定轨弧长,可有效提高轨道确定精度,当跟踪弧段达到20 d时,探测器位置确定精度可达92 m;②在现有测量精度条件下,测距信息对定轨精度的贡献较大,测距/测速组合定轨方式与仅利用测距、测速定轨相比,估计的位置精度分别提高了32.23%、99.52%;③采用多测控网定轨模式可以提高多站共视比率,有利于提高定轨精度和收敛速度,DSN/CDSN联合定轨比仅采用DSN定轨的平均位置精度提高43.73%。
    Highlights
    ● Increasing the tacking arc length can effectively improve the orbit determination precision. Moreover,the position accuracy of the estimated detector reaches 92m when the tracking arc is set to be 20 d. ● The combined ranging/Doppler orbit determination method gains a growth of 32.23% and 99.52% estimating position accuracy,compared with the only ranging and only Doppler orbit determination strategies,respectively. ● By utilizing multiple deep space networks,the common viewing rate of multi stations increases markedly,which is conducive to improve the accuracy and the convergence of the orbit determination.
  • 图  1  类LISA轨道结构示意图[5]

    Fig.  1  Schematic of LISA-type orbit configuration[5]

    图  2  LISA探测器定轨误差(1σ)

    Fig.  2  Orbit determination errors of LISA detector(1σ)

    图  3  LISA-1探测器在测距/测速、测距数据类型下的定轨误差(1σ)

    Fig.  3  Orbit determination error of LISA-1 detector under ranging/velocity measurement and ranging data types(1σ)

    图  4  LISA-1探测器在测速条件下的定轨误差(1σ)

    Fig.  4  Orbit determination error of LISA-1 detector under the condition of velocity measurement(1σ)

    图  5  不同测量数据类型下的定轨误差(1σ)

    Fig.  5  Orbit determination errors with different types of measurement data(1σ)

    图  6  不同深空网对LISA-1的跟踪高度角变化

    Fig.  6  Elevation angles of LISA-1 tracked by DSN and CDSN

    图  7  不同深空站跟踪弧段统计(LISA-1)

    Fig.  7  Tracking arcs analysis of LISA-1 by different deep space stations

    图  8  在不同深空网下的初始定轨误差(1σ)

    Fig.  8  Orbit determination errors of LISA-1 using different deep space nets(1σ)

    表  1  测站的经纬度数据

    Table  1  Longitude and latitude parameters of stations

    深空网测站名称经度/(°)纬度/(°)高度/m
    DSN堪培拉148.981 667–35.401 3890.00
    戈尔德斯顿–116.890 27835.426 6670.00
    马德里–4.248 05640.431 3890.00
    CDSN佳木斯130.770 00046.493 6110.00
    喀什76.727 86138.442 9720.00
    萨帕拉–70.149 500–38.191 3610.00
    下载: 导出CSV

    表  2  J2000地心惯性系下的LISA探测器初始状态[5]

    Table  2  Initial state of LISA detector in J2000 ECI[5]

    初始状态LISA探测器
    LISA-1(SC1)LISA-2(SC2)LISA-3(SC3)
    x / km9 083 593.303 698 6297 878 413.365 275 4439 187 911.218 349 934
    y / km53 363 415.266 407 3351 178 228.431 450 9552 027 737.928 422 38
    z / km23 406 041.402 737 1823 221 889.835 484 9221 281 247.889 629 37
    $Vx/({\rm{km}} \cdot {{\rm{s}}^{ - 1}})$–10.973 466 841 444 6–10.722 522 893 287 93–10.850 218 497 286 31
    $Vy/({\rm{km}} \cdot {{\rm{s}}^{ - 1}})$1.942 517 603 578 3561.775 737 210 810 8171.611 119 961 698 645
    $Vz/({\rm{km}} \cdot {{\rm{s}}^{ - 1}})$0.575 964 158 412 304 50.944 606 400 388 384 10.786 360 059 047 334 3
    下载: 导出CSV

    表  3  仿真参数与定轨模型

    Table  3  Simulation parameters and orbit determination model

    项目参数与模型
    测距误差系统偏差2.055 m:测站设备时延2.0 m,对流层和电离层以及钟差钟漂等带来0.055 m误差;随机噪声0.6 m
    测速误差/(mm·s–1随机噪声:0.03
    测距测速观测量采样时间/s60
    观测最低仰角/(°)10
    行星星历JPL DE405
    参考框架ITRF 2008
    岁差、章动IAU 2000A
    地球旋转参数IERS Standard Rapid 产品
    参考框系J2000地心惯性系
    引力中心天体太阳
    N体摄动地球、月球以及金星、木星、土星、火星、水星、天王星、海王星等行星
    太阳辐射压单参数Ball光压模型
    相对论摄动Schwarzschild
    积分器Adams-Cowell 11阶定步长积分器,积分步长120 s
    参数估计非线性加权最小二乘估计
    解算参数位置速度,太阳辐射压系数
    下载: 导出CSV

    表  4  不同跟踪弧长下LISA-1定轨位置误差(1σ)

    Table  4  LISA-1 position errors of orbit determination with different tracking arc length(1σ)

    跟踪弧长/d位置误差/m
    RTN3D
    22.030 0297.263 5876.524 2967.291 0
    32.059 8170.294 2489.705 3543.409 3
    52.058 382.275 3199.557 0225.453 0
    72.052 550.351 1205.362 0219.440 6
    102.063 438.659 9150.388 1160.722 9
    152.046 230.756 2107.594 5115.077 6
    202.055 325.032 485.508 091.530 2
    252.051 223.858 991.996 797.665 1
    302.021 126.899 289.220 895.341 9
    下载: 导出CSV

    表  5  不同测量数据类型LISA-1的定轨结果(1σ)

    Table  5  Orbit determination results of LISA-1 with different types of measurement data(1σ)

    定轨数据位置精度/m
    RTN3D
    测距/测速2.055 325.032 485.508 091.530 2
    测距2.040 151.574 1117.729 6135.058 7
    测速19 042.260 8469.458 9149.779 819 048.635 7
    下载: 导出CSV

    表  6  测站共视率统计(LISA-1)

    Table  6  Observation rate statistics of simultaneous observation at the ground stations(LISA-1)

    深空网覆盖率/%
    不可见单站双站3站4站
    CDSN54.9324.7920.2800
    DSN40.3852.047.5800
    DSN/CDSN29.7624.4830.1214.750.89
    下载: 导出CSV
  • [1] ABBOTT B P,ABBOTT R,ABBOTT T D,et al. GW150914:the advanced LIGO detectors in the era of first discoveries[J]. Physical Review Letters,2016,116(13):131103. doi:  10.1103/PhysRevLett.116.131103
    [2] 罗子人,白姗,边星,等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447.

    LUO Z R,BAI S,BIAN X,et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics,2013,43(4):415-447.
    [3] BENDER P L, BRILLET A, CIUFOLINI I, et al. Laser interferometer space antenna for the detection and observation of gravitational waves[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1998, 96(10): 1500-1501.
    [4] AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[EB/OL]. (2017-2-23)[2020-11-25]. https://arxiv.org/abs/1702.00786v1.
    [5] WANG G,NI W T. Numerical simulation of time delay interferometry for TAIJI and new LISA[J]. Research in Astronomy and Astrophysics,2019,19(4):58. doi:  10.1088/1674-4527/19/4/58
    [6] DANZMANN K, LISA Study Team. Laser interferometer space antenna: a cornerstone mission for the observation of gravitational waves[J]. Advances in Space Research, 2003, 32(7): 1233-1242.
    [7] TINTO M,DHURANDHAR S V. Time-delay interferometry[J]. Living Reviews in Relativity,2014,17(1):6. doi:  10.12942/lrr-2014-6
    [8] TINTO M,ARMSTRONG J W. Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation[J]. Physical Review D,1999,59(10):102003. doi:  10.1103/PhysRevD.59.102003
    [9] MERKOWITZ S M,AHMAD A,HYDE T T,et al. LISA propulsion module separation study[J]. Classical and Quantum Gravity,2005,22(10):S413. doi:  10.1088/0264-9381/22/10/037
    [10] KRUIZINGA G L, GUSTAFSON E D, THOMPSON P F, et al. Mars Science Laboratory Orbit Determination 2012[C]//23rd International Symposium on Space Flight Dynamics. Pasadena, CA, USA: [s. n.], 2012.
    [11] 曹建峰,张宇,胡松杰,等. 嫦娥三号着陆器精确定位与精度分析[J]. 武汉大学学报(信息科学版),2016,41(2):274-278.

    CAO J F,ZHANG Y,HU S J,et al. An analysis of precise positioning and accuracy of the CE-3 lunar lander soft landing[J]. Geomatics and Information Science of Wuhan University,2016,41(2):274-278.
    [12] 张宇,孔静,陈明,等. CE5T拓展试验轨道精度分析[J]. 宇航学报,2019,40(9):1014-1023.

    ZHANG Y,KONG J,CHEN M,et al. Orbit accuracy analysis for CE5T extended mission[J]. Journal of Astronautics,2019,40(9):1014-1023.
    [13] CHUNG L R. Orbit determination methods for deep space drag-free controlled laser interferometry missions[D]. Washington: Department of Aerospace Engineering University of Maryland, 2006.
    [14] THORNTON C L, BORDER J S. Radiometric tracking techniques for deep-space navigation[M]. [S. l.]: John Wiley & Sons, 2003.
    [15] 董光亮,李海涛,郝万宏,等. 中国深空测控系统建设与技术发展[J]. 深空探测学报(中英文),2018,5(2):99-114.

    DONG G L,LI H T,HAO W H,et al. Development and future of China’s deep space TT&C system[J]. Journal of Deep Space Exploration,2018,5(2):99-114.
    [16] BIN Y I,DEFENG G U,CHANG X,et al. Integrating BDS and GPS for precise relative orbit determination of LEO formation flying[J]. Chinese Journal of Aeronautics,2018,31(10):2013-2022. doi:  10.1016/j.cja.2018.06.001
    [17] CERDONIO M,DE MARCHI F,DE PIETRI R,et al. Modulation of LISA free-fall orbits due to the Earth-Moon system[J]. Classical and Quantum Gravity,2010,27(16):165007. doi:  10.1088/0264-9381/27/16/165007
    [18] LUO J,CHEN L,DUAN H,et al. Tianqin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity,2016,33(3):035010.
    [19] RUAN W, CAI R, GUO Z, et al. Taiji program: gravitational-wave sources[EB/OL]. (2020-4-20)[2020-11-25]. https://arxiv.org/abs/1807.09495.
  • [1] 陈春亮, 张正峰, 盛瑞卿, 杨孟飞.  深空探测跳跃式再入返回任务设计 . 深空探测学报(中英文), 2021, 8(3): 269-275. doi: 10.15982/j.issn.2096-9287.2021.20210016
    [2] 牛东文, 段建锋, 王美, 陈略, 路伟涛, 任天鹏.  中国深空网VLBI定轨精度及分时采集模式分析 . 深空探测学报(中英文), 2021, 8(4): 1-7. doi: 15982/j.issn.2096-9287.2021.20191120001
    [3] 牛厂磊, 罗志福, 雷英俊, 王文强, 郑见杰, 乔学荣, 罗洪义, 胡文军, 钟武烨.  深空探测先进电源技术综述 . 深空探测学报(中英文), 2020, 7(1): 24-34. doi: 10.15982/j.issn.2095-7777.2020.20200002
    [4] 吴树范, 王楠, 龚德仁.  引力波探测科学任务关键技术 . 深空探测学报(中英文), 2020, 7(2): 118-127. doi: 10.15982/j.issn.2095-7777.2020.20190402001
    [5] 罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞.  中国空间引力波探测“太极计划”及“太极1号”在轨测试 . 深空探测学报(中英文), 2020, 7(1): 3-10. doi: 10.15982/j.issn.2095-7777.2020.20191230001
    [6] 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明.  深空探测器自主控制技术综述 . 深空探测学报(中英文), 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
    [7] 陈莉丹, 谢剑锋, 刘勇, 陈明.  中国深空探测任务轨道控制技术综述 . 深空探测学报(中英文), 2019, 6(3): 210-218. doi: 10.15982/j.issn.2095-7777.2019.03.002
    [8] 段建锋, 张宇, 曹建峰, 陈略, 陈明, 谢剑锋.  中国月球探测任务轨道确定技术及发展综述 . 深空探测学报(中英文), 2019, 6(3): 203-209. doi: 10.15982/j.issn.2095-7777.2019.03.001
    [9] 曹建峰, 陈略, 董卫华, 段建锋, 韩松涛, 张宇.  双站跟踪模式下“嫦娥4号”中继星定轨仿真分析 . 深空探测学报(中英文), 2019, 6(3): 241-246. doi: 10.15982/j.issn.2095-7777.2019.03.007
    [10] 韩松涛, 谢剑锋, 王美, 李黎.  一种应用于实时深空干涉测量的电离层时延修正方法 . 深空探测学报(中英文), 2019, 6(3): 232-235,300. doi: 10.15982/j.issn.2095-7777.2019.03.005
    [11] 李永, 丁凤林, 周成.  深空探测推进技术发展趋势 . 深空探测学报(中英文), 2018, 5(4): 323-330. doi: 10.15982/j.issn.2095-7777.2018.04.002
    [12] 段建锋, 刘勇, 李勰, 陈明, 王兆魁.  “嫦娥4号”中继星任务轨道确定问题初探 . 深空探测学报(中英文), 2018, 5(6): 531-538. doi: 10.15982/j.issn.2095-7777.2018.06.005
    [13] 朱安文, 刘磊, 马世俊, 李明.  空间核动力在深空探测中的应用及发展综述 . 深空探测学报(中英文), 2017, 4(5): 397-404. doi: 10.15982/j.issn.2095-7777.2017.05.001
    [14] 陈略, 平劲松, 张建辉, 刘庆, 岳世磊, 陈永强, 王际舟, 李文潇.  中国深空网成功实施“卡西尼号”探测器坠入土星测量试验 . 深空探测学报(中英文), 2017, 4(5): 491-492. doi: 10.15982/j.issn.2095-7777.2017.05.012
    [15] 沈自才, 代巍, 白羽, 刘荣强, 丁义刚, 刘业楠.  载人深空探测任务的空间环境工程关键问题 . 深空探测学报(中英文), 2016, 3(2): 99-107. doi: 10.15982/j.issn.2095-7777.2016.02.001
    [16] 郑博, 张泽旭, 周浩, 揭昭斌, 崔祜涛.  一种小推力借力飞行转移轨道初始设计方法 . 深空探测学报(中英文), 2015, 2(3): 256-261. doi: 10.15982/j.issn.2095-7777.2015.03.011
    [17] 王伟, 马彦涵, 周易倩, 方宝东.  深空探测磁动力技术研究进展 . 深空探测学报(中英文), 2015, 2(3): 203-207. doi: 10.15982/j.issn.2095-7777.2015.03.002
    [18] 韩松涛, 唐歌实, 曹建峰, 陈略, 任天鹏, 王美.  面向"CE-3号"软着陆过程的深空网干涉测量技术 . 深空探测学报(中英文), 2015, 2(2): 120-124. doi: 10.15982/j.issn.2095-7777.2015.02.003
    [19] 吴伟仁, 于登云.  深空探测发展与未来关键技术 . 深空探测学报(中英文), 2014, 1(1): 5-17.
    [20] 唐歌实, 韩松涛, 陈略, 曹建峰, 任天鹏, 王美.  深空网干涉测量技术在“嫦娥3号”任务中应用分析 . 深空探测学报(中英文), 2014, 1(2): 146-149.
  • 加载中
图(8) / 表 (6)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  11
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-25
  • 修回日期:  2021-03-08
  • 刊出日期:  2021-04-28

空间引力波探测器轨道确定及仿真分析

doi: 10.15982/j.issn.2096-9287.2021.20200081
    基金项目:  国家自然科学基金资助项目(41874028)
    作者简介:

    李康康(1994– ),男,硕士生,主要研究方向:卫星轨道确定。通讯地址:广东省珠海市香洲区中山大学(珠海校区)(519082)电话:15056790826 E-mail:likk6@mail2.sysu.edu.cn

    通讯作者: 谷德峰(1980– ),男,博士,教授,主要研究方向:卫星精密跟踪测量数据处理、轨道确定和试验评估等。本文通讯作者。通讯地址:广东省珠海市香洲区中山大学(珠海校区)(519082)电话:13787129336 E-mail:gudefeng@mail.sysu.edu.cn
  • ● Increasing the tacking arc length can effectively improve the orbit determination precision. Moreover,the position accuracy of the estimated detector reaches 92m when the tracking arc is set to be 20 d. ● The combined ranging/Doppler orbit determination method gains a growth of 32.23% and 99.52% estimating position accuracy,compared with the only ranging and only Doppler orbit determination strategies,respectively. ● By utilizing multiple deep space networks,the common viewing rate of multi stations increases markedly,which is conducive to improve the accuracy and the convergence of the orbit determination.
  • 中图分类号: V476.4

摘要: 针对空间引力波探测器的精密轨道确定问题,选取LISA(Laser Interferometer Space Antenna)作为研究对象,建立了探测器的目标仿真环境,模拟生成美国深空网(Deep Space Network,DSN)和中国深空网(China Deep Space Network,CDSN)在不同测站下的测距测速数据,采用非线性加权最小二乘(Weighted Least Squares,WLS)和蒙特卡洛方法(Monte Carlo,MC)分析跟踪弧长、测轨数据类型、测站数量及其分布等因素对LISA探测器定轨精度的影响。仿真结果表明:①增加测站的定轨弧长,可有效提高轨道确定精度,当跟踪弧段达到20 d时,探测器位置确定精度可达92 m;②在现有测量精度条件下,测距信息对定轨精度的贡献较大,测距/测速组合定轨方式与仅利用测距、测速定轨相比,估计的位置精度分别提高了32.23%、99.52%;③采用多测控网定轨模式可以提高多站共视比率,有利于提高定轨精度和收敛速度,DSN/CDSN联合定轨比仅采用DSN定轨的平均位置精度提高43.73%。

注释:
1)  ● Increasing the tacking arc length can effectively improve the orbit determination precision. Moreover,the position accuracy of the estimated detector reaches 92m when the tracking arc is set to be 20 d. ● The combined ranging/Doppler orbit determination method gains a growth of 32.23% and 99.52% estimating position accuracy,compared with the only ranging and only Doppler orbit determination strategies,respectively. ● By utilizing multiple deep space networks,the common viewing rate of multi stations increases markedly,which is conducive to improve the accuracy and the convergence of the orbit determination.

English Abstract

李康康, 谷德峰, 安子聪, 宋佳凝, 朱炬波. 空间引力波探测器轨道确定及仿真分析[J]. 深空探测学报(中英文), 2021, 8(2): 182-189. doi: 10.15982/j.issn.2096-9287.2021.20200081
引用本文: 李康康, 谷德峰, 安子聪, 宋佳凝, 朱炬波. 空间引力波探测器轨道确定及仿真分析[J]. 深空探测学报(中英文), 2021, 8(2): 182-189. doi: 10.15982/j.issn.2096-9287.2021.20200081
LI Kangkang, GU Defeng, AN Zicong, SONG Jianing, ZHU Jubo. Simulation and Analysis of Orbit Determination of Space Gravitational Wave Detector[J]. Journal of Deep Space Exploration, 2021, 8(2): 182-189. doi: 10.15982/j.issn.2096-9287.2021.20200081
Citation: LI Kangkang, GU Defeng, AN Zicong, SONG Jianing, ZHU Jubo. Simulation and Analysis of Orbit Determination of Space Gravitational Wave Detector[J]. Journal of Deep Space Exploration, 2021, 8(2): 182-189. doi: 10.15982/j.issn.2096-9287.2021.20200081
    • 2015年,地面引力波探测项目激光干涉引力波天文台(Laser Interferometer Gravitational-wave Observatory,LIGO)首次探测到双黑洞合并产生的引力波[1],开启了观察黑洞合并的新窗口。受地面震动、引力梯度噪声以及干涉臂长受限的影响,地面引力波探测无法覆盖中低频段的引力波。空间引力波探测任务由于采用大尺度空间探测器编队,不受臂长尺度约束,探测频段更广,波源更加丰富[2],为认识宇宙演化提供一种新的方式,是当前国际热门研究领域。其中LISA(Laser Interferometer Space Antenna)由美国国家航空航天局(National Aeronautics and Space Administration,NASA)和欧洲航天局(European Space Agency,ESA)共同提出[3],是目前发展最为成熟、最具有代表性的空间引力波探测计划,预计于2034年发射。LISA由3颗探测器构成的大尺度分布式日心轨道编队,位于黄道内,编队中心约在地球与太阳构成的后掠角20°位置上,距离地球5~6.5千万km,由约为250万 km的干涉臂长构成等边三角形[4]图1给出了LISA轨道在太阳系下的示意图。

      图  1  类LISA轨道结构示意图[5]

      Figure 1.  Schematic of LISA-type orbit configuration[5]

      LISA在发射入轨阶段和科学实验阶段对定轨精度以及臂长的测量精度有一定的要求[6]。一是来自星间激光干涉仪对波束指向的需求;二是来自空间引力波探测系统时间延迟干涉(Time Delay Interferometry,TDI)[7]压制激光频率噪声的需求[8];三是来自编队构形高精度初始化和稳定性保持的需求[9]

      测控距离远、跟踪弧段少、精度要求高给LISA精密定轨(Precise Orbit Determination,POD)带来一定的挑战。本文以LISA为例,分析研究其探测器的精密定轨问题,为空间引力波探测计划的工程实践提供理论支撑和技术参考。LISA探测器距离地球较为遥远,难以采用低轨卫星的定轨、定位手段。而基于深空网的无线电测距测速定轨技术已成功应用于深空探测任务,如美国火星探测任务“好奇号”(Curiosity)[10]、“嫦娥三号”(Chang'E-3,CE-3)[11]、“嫦娥五号飞行试验器”(Chang'E-5T1,CE-5T1)[12]等。因此,提出采用DSN(Deep Space Network)和CSDN(Chinese Deep Space Network)对LISA探测器进行精密定轨。

      尽管LISA早在20世纪90年代提出,但对LISA轨道确定的相关研究仍较少,其中文献[13]对早期的LISA轨道进行了初步定轨仿真,分析了基于DSN、甚长基线干涉测量(Very Long Baseline Interferometry,VLBI)、星间激光测量数据3种不同的组合定轨策略的轨道精度将地球当作质点,且假设测站位于地球中心,未考虑地球的自转,也没有模拟分析不同深空网、跟踪弧长、测量数据类型等因素的影响。为此,本文基于多深空网测量模式下的LISA精密定轨分析,考虑地球自转以及测站的空间位置,模拟生成不同测站的测距、测速数据,采用非线性加权最小二乘(Weighted Least Squares,WLS)和蒙特卡洛方法(Monte Carlo,MC)分析深空网的跟踪弧长、测量数据类型以及不同深空网测站数量及其分布对LISA精密轨道确定的影响。

    • LISA精密定轨仿真分析中采用DSN和CDSN作为跟踪测站。其中,DSN的3个测站分别位于加利福尼亚戈尔德斯顿、澳大利亚堪培拉和西班牙马德里[14]。CDSN主要包括佳木斯深空测站、喀什深空测站、阿根廷萨帕拉市深空测站[15]表1给出了上述6个测站的经纬度。

      表 1  测站的经纬度数据

      Table 1.  Longitude and latitude parameters of stations

      深空网测站名称经度/(°)纬度/(°)高度/m
      DSN堪培拉148.981 667–35.401 3890.00
      戈尔德斯顿–116.890 27835.426 6670.00
      马德里–4.248 05640.431 3890.00
      CDSN佳木斯130.770 00046.493 6110.00
      喀什76.727 86138.442 9720.00
      萨帕拉–70.149 500–38.191 3610.00

      模拟生成的观测数据为测距和测速信息,其中观测数据包含了系统误差和随机误差。考虑测距系统偏差主要由测距设备延迟、对流层带来的天顶和视向偏差、电离层带来的视向偏差以及时钟钟差和钟漂等因素组成;产生随机误差的主要是时标和频率源不稳定以及热噪声等因素,并假设其服从高斯分布。仿真分析中,根据文献[14]美国深空网的测站测量精度,本次仿真设置测距系统误差为2.055 m,其中测站设备时延2.0 m,对流层和电离层以及钟差钟漂等带来的误差0.055 m;测距随机噪声的标准差为0.6 m。测速误差仿真时只涉及到随机误差,观测噪声的标准差为0.03 mm/s。

      采用文献[4]中给出的最新的、250万 km臂长的LISA设计轨道,轨道初始状态采用文献[5]中初始时间为2028年3月22日12:00:00 UTC,在J2000地心惯性系下(J2000 Earth-Centered Inertial,J2000 ECI)的轨道初值,如表2所示。仿真分析过程:①根据表2给出的LISA探测器初始状态,利用Adams-Cowell轨道积分器分别计算LISA 3个探测器的轨道信息,获得相应的轨道文件;②根据表1所示的测站信息,结合步骤①中得到的轨道文件,利用测距、测速的数学模型迭代计算探测器相对于测站的距离和速度的理论值,并在理论值的基础上添加设定的系统偏差和随机噪声,从而得到观测数据;③利用观测数据对LISA探测器轨道求解,分析不同仿真场景下LISA探测器的定轨精度,其中轨道精度由设计轨道与求解结果之间的偏差衡量。本文采用NUDTTK软件[16]进行仿真分析。

      表 2  J2000地心惯性系下的LISA探测器初始状态[5]

      Table 2.  Initial state of LISA detector in J2000 ECI[5]

      初始状态LISA探测器
      LISA-1(SC1)LISA-2(SC2)LISA-3(SC3)
      x / km9 083 593.303 698 6297 878 413.365 275 4439 187 911.218 349 934
      y / km53 363 415.266 407 3351 178 228.431 450 9552 027 737.928 422 38
      z / km23 406 041.402 737 1823 221 889.835 484 9221 281 247.889 629 37
      $Vx/({\rm{km}} \cdot {{\rm{s}}^{ - 1}})$–10.973 466 841 444 6–10.722 522 893 287 93–10.850 218 497 286 31
      $Vy/({\rm{km}} \cdot {{\rm{s}}^{ - 1}})$1.942 517 603 578 3561.775 737 210 810 8171.611 119 961 698 645
      $Vz/({\rm{km}} \cdot {{\rm{s}}^{ - 1}})$0.575 964 158 412 304 50.944 606 400 388 384 10.786 360 059 047 334 3
    • 本文采用深空网的双向测量模式,测距测量模型可表示为

      $$ \rho _ {\rm A}^i\left( t \right) = \dfrac{{\left| {{{r}}_{\rm A}^i\left( {t - {\tau _ 2}} \right) - {{R}}_{\rm A}^i\left( t \right)} \right| + \left| {{{r}}_{\rm A}^i\left( {t - {\tau _2}} \right) - {{R}}_{\rm A}^i\left( {t - {\tau _ 2} - {\tau _1}} \right)} \right|}}{2} $$ (1)

      其中:上标$i$表示LISA探测器;下标A表示测站;$\rho_{\rm A}^i\left( t \right)$为采样时刻$t$测站A对探测器$i$的真实几何距离;${{R}}_{\rm A}^i\left( t \right)$为测站A在$t$时刻接收到探测器$i$下行信号的位置;${{r}}_{\rm A}^i\left( {t - {\tau _2}} \right)$为探测器$i$$t - {\tau _2}$时刻接收到测站A上行信号的位置;${{R}}_{\rm A}^i\left( {t - {\tau _2} - {\tau _1}} \right)$为测站在$t - {\tau _2} - {\tau _1}$时刻发射上行信号到探测器的位置;${\tau _1}$为测站信号到探测器的上行光行时;${\tau _2}$为探测器信号到测站的下行光行时。

      测速信息可由测距模型的差分得到,具体的测速测量模型为

      $$\dot \rho _{\rm A}^i\left( t \right) = \frac{{\rho _{\rm A}^i\left( t \right) - \rho _{\rm A}^i\left( {t - \Delta t} \right)}}{{\Delta t}}$$ (2)

      其中:$\dot \rho _{\rm A}^i\left( t \right)$$t$时刻测站A相对探测器$i$的观测速率;$\rho _{\rm A}^i\left( t \right)$$\rho _{\rm A}^i\left( {t - \Delta t} \right)$分别为利用式(1)得到$t$$t - \Delta t$时刻的测站A对探测器$i$的几何距离;$\Delta t$为两次测距的时间间隔。

      考虑系统误差和随机噪声等,定轨过程的观测方程最终可表示为

      $$O_{\rm A}^i\left( t \right) = \rho _{\rm A}^i\left( t \right) + B_{\rm A}^i\left( t \right) + T_{\rm A}^i\left( t \right) + I_{\rm A}^i\left( t \right) + \varepsilon _{\rm A}^i\left( t \right)$$ (3)
      $$\dot O_{\rm A}^i\left( t \right) = \dot \rho _{\rm A}^i\left( t \right) + \dot \varepsilon _{\rm A}^i\left( t \right)$$ (4)

      其中:$O_{\rm A}^i\left( t \right)$$\dot O_{\rm A}^i\left( t \right)$分别为测距和测速的观测值,$B_{\rm A}^i\left( t \right)$$T_{\rm A}^i\left( t \right)$$I_{\rm A}^i\left( t \right)$分别为测站设备延迟、对流层和电离层引入的误差,$\varepsilon _{\rm A}^i\left( t \right)$$\dot \varepsilon _{\rm A}^i\left( t \right)$分别为测距和测速模型中的其余噪声。

      LISA可忽略地球和月球重力场[17],在仿真观测数据以及定轨过程都不考虑其影响,因此既不会对仿真结果造成重大影响又可简化仿真过程以提升计算效率。另外,考虑卫星入轨会有位置和速度的误差,参考文献[4],对表2中的设计轨道初值添加对应的初始误差后作为定轨的初始位置速度,即分别在初始位置的xyz方向上各添加10 km误差,初始速度的3轴方向各添加1 cm/s误差作为定轨的初始状态。采用非线性加权最小二乘算法估计轨道初始状态,根据测距和测速的观测噪声对测量数据进行加权定轨,并采用MC方法进行35次仿真,计算定轨位置和速度的均方根(Root Mean Square,RMS)误差的平均值评估定轨精度。定轨模型和参数设置总结于表3

      表 3  仿真参数与定轨模型

      Table 3.  Simulation parameters and orbit determination model

      项目参数与模型
      测距误差系统偏差2.055 m:测站设备时延2.0 m,对流层和电离层以及钟差钟漂等带来0.055 m误差;随机噪声0.6 m
      测速误差/(mm·s–1随机噪声:0.03
      测距测速观测量采样时间/s60
      观测最低仰角/(°)10
      行星星历JPL DE405
      参考框架ITRF 2008
      岁差、章动IAU 2000A
      地球旋转参数IERS Standard Rapid 产品
      参考框系J2000地心惯性系
      引力中心天体太阳
      N体摄动地球、月球以及金星、木星、土星、火星、水星、天王星、海王星等行星
      太阳辐射压单参数Ball光压模型
      相对论摄动Schwarzschild
      积分器Adams-Cowell 11阶定步长积分器,积分步长120 s
      参数估计非线性加权最小二乘估计
      解算参数位置速度,太阳辐射压系数
    • 本节从定轨弧长、测轨数据类型、测站分布及其数量等方面仿真分析LISA定轨的精度。

    • 由于观测数据中存在随机误差,一般随着定轨弧长增加,定轨精度会因逐渐平滑随机误差以及测站对探测器观测几何约束逐渐变强而提高。下面通过分析不同的定轨弧长对LISA轨道确定的影响,讨论上述仿真条件下LISA轨道的位置、速度估计精度。以DSN作为跟踪测站,定轨弧长分别取[2,3,5,7,10,15,20,25,30]d,采用测距/测速组合测量数据进行初始轨道的解算。

      图2为多次MC仿真统计的LISA探测器的位置、速度RMS误差的平均值曲线,其中误差棒对应于统计的标准差。从图2中可以看出,定轨精度随着定轨弧长增加而提高,标准差随着定轨弧长增加而降低,可信度提高。LISA系统的3个探测器在同一弧长定轨精度不完全相同,这主要是因为即使采用同一定轨弧长,但由于探测器和测站的几何关系以及测量数据不完全相同、观测的数据量和随机误差都会有所不同等因素导致的,但定轨精度的量级是基本一致的。

      图  2  LISA探测器定轨误差(1σ)

      Figure 2.  Orbit determination errors of LISA detector(1σ)

      当定轨弧长达到20 d时,LISA 3星的位置误差均可达92 m,速度误差均可达3.3 mm/s;此后随着定轨弧长的增加,定轨精度变化不大。

      表4中给出了LISA-1探测器在轨道径向(R)、切向(T)、法向(N)以及三维方向(3D)下的定轨位置精度。从表4中可以看出,径向定轨精度受定轨弧长的变化影响不大,在2.05 m附近波动,表现为测距数据的系统偏差;而切向和法向的位置精度会随着定轨弧长的变化逐渐提高,且法向的位置精度最差。这是由于测距信息提供的测站与探测器的几何距离主要体现在径向上,对切向和法向的约束较弱,需增加跟踪弧段、增加观测数据量来提高定位精度。

      表 4  不同跟踪弧长下LISA-1定轨位置误差(1σ)

      Table 4.  LISA-1 position errors of orbit determination with different tracking arc length(1σ)

      跟踪弧长/d位置误差/m
      RTN3D
      22.030 0297.263 5876.524 2967.291 0
      32.059 8170.294 2489.705 3543.409 3
      52.058 382.275 3199.557 0225.453 0
      72.052 550.351 1205.362 0219.440 6
      102.063 438.659 9150.388 1160.722 9
      152.046 230.756 2107.594 5115.077 6
      202.055 325.032 485.508 091.530 2
      252.051 223.858 991.996 797.665 1
      302.021 126.899 289.220 895.341 9
    • 图3图4为LISA-1探测器在不同观测数据类型(测距/测速、单独测距、单独测速)下的定轨位置误差。从图3图4中可知:用测距、测速数据定轨的收敛情况与使用测距/测速数据定轨的收敛情况一致,根据图4中的定轨位置曲线可以归纳出仅使用测速数据定轨的精度较低,定轨位置误差大。由上述分析可知,定轨弧长达到20 d后,定轨精度随定轨弧长增加提升不再明显,故采用DSN 20 d的跟踪弧长分析测距、测速以及测速/测距融合3种测量方案的LISA定轨精度,以此讨论测距、测速数据类型对定轨精度的影响程度。

      图  3  LISA-1探测器在测距/测速、测距数据类型下的定轨误差(1σ)

      Figure 3.  Orbit determination error of LISA-1 detector under ranging/velocity measurement and ranging data types(1σ)

      图  4  LISA-1探测器在测速条件下的定轨误差(1σ)

      Figure 4.  Orbit determination error of LISA-1 detector under the condition of velocity measurement(1σ)

      图5是利用定轨弧长为20 d并分别采用测距/测速、测距、测速数据定轨后的位置速度精度。从图5中易得知:同种定轨测量数据类型下,LISA 3星的定轨精度量级一致;采用测距/测速组合定轨比仅测距数据定轨精度有所提高;仅采用测速数据的定轨精度最差,位置误差大于10 km,速度误差大于1 m/s,无法满足高精度定轨的需求。

      图  5  不同测量数据类型下的定轨误差(1σ)

      Figure 5.  Orbit determination errors with different types of measurement data(1σ)

      以LISA-1为例,表5给出了20 d跟踪弧长下,不同定轨数据类型在径向、切向、法向和三维方向上的位置精度。由表5中数据可知,测距和测距/测速方案定轨中,径向误差约2.0 m,这与表4中的径向结果相吻合;而仅测速数据定轨方案的径向定位误差较大。对数据进一步分析可得:在20 d的定轨弧长下,采用测距/测速定轨精度比仅采用测距数据定轨位置精度提高32.23%,比仅采用测速定轨位置精度提高99.52%。可见,测距数据对定轨径向精度的贡献比较大,仅利用测速数据,径向定轨精度明显较差;联合测速数据,可适当提高飞行方向和法向的定轨精度。

      表 5  不同测量数据类型LISA-1的定轨结果(1σ)

      Table 5.  Orbit determination results of LISA-1 with different types of measurement data(1σ)

      定轨数据位置精度/m
      RTN3D
      测距/测速2.055 325.032 485.508 091.530 2
      测距2.040 151.574 1117.729 6135.058 7
      测速19 042.260 8469.458 9149.779 819 048.635 7
    • 除跟踪弧长和定轨数据类型外,不同的深空网因测站数量和位置分布不同也会影响定轨效果,下面分析DSN、CDSN以及DSN/CDSN 3种不同深空网定轨方案对LISA定轨精度的影响。同时,考虑到LISA系列探测器均分布在同一太阳轨道平面上,多数仅真近点角(true anomaly)不同,深空网对LISA 3星的覆盖情况基本一致,故本节仅以LISA-1为例进行分析。

    • 图6为DSN和CDSN跟踪7 d高度角的变化示意图,从图6中可看出,高度角最大不超过80°,且高度角的变化周期约为3 d,主要由LISA轨道的特点决定,因其位于地球后的太阳轨道,与地球的相对位置几乎保持不变,测站随着地球自转与探测器发生周期性变化。若设最小观测高度角为10°,则DSN/CDSN和DSN在跟踪20 d弧长下对LISA覆盖率分别达到70.24%和59.62%,而由于CDSN的测站分布不如DSN均匀,对LISA探测器的覆盖率为45.07%,略低于DSN。

      图  6  不同深空网对LISA-1的跟踪高度角变化

      Figure 6.  Elevation angles of LISA-1 tracked by DSN and CDSN

      表6给出了采用不同深空网进行跟踪20 d时,不同测站数量对LISA-1的观测情况。由于测站分布在不同半球,DSN和CDSN单独跟踪时,都不存在3个测站同时观测到探测器的情况,且单站观测率最高。而DSN/CDSN联合跟踪测量时,双站和3个测站共视率共占比44.87%,其中3站同时观测率为14.57%。

      表 6  测站共视率统计(LISA-1)

      Table 6.  Observation rate statistics of simultaneous observation at the ground stations(LISA-1)

      深空网覆盖率/%
      不可见单站双站3站4站
      CDSN54.9324.7920.2800
      DSN40.3852.047.5800
      DSN/CDSN29.7624.4830.1214.750.89

      图7分别展示了DSN和CDSN对LISA-1在2028年3月22日12:00:00UTC —2028年3月29日12:00:00UTC期间跟踪7 d的测站跟踪时段情况。DSN和CDSN联合观测利于增加有效观测弧段,利于提高观测率。

      图  7  不同深空站跟踪弧段统计(LISA-1)

      Figure 7.  Tracking arcs analysis of LISA-1 by different deep space stations

    • 根据上述对深空网的观测几何分析可知,不同的深空网观测的弧段、连续观测弧长以及测站几何约束能力各不相同,这都会对LISA的定轨精度产生影响。

      图8中分别给出了基于DSN、CDSN以及DSN/CDSN 3种不同深空网下的LISA-1轨道确定的结果,其中测量信息采用测距/测速组合模式。图8中可以看出:在相同跟踪弧长的情况下,采用DSN/CDSN组合网络比仅采用DSN和CDSN的单深空网络的定轨精度明显提高。分析2 d的定轨弧长发现:CDSN定轨精度明显低于DSN,这是由于CDSN具有较大数据量,同时注意到,尽管CDSN的总观测覆盖率比DSN低,但CDSN双站共视率略高,此后基于CDSN的定轨精度会在一定程度上略高于基于DSN的定轨精度,但总体上两者的定轨精度均在相同的量级上变化;当定轨弧长达到7 d后,两者的定轨结果差异明显减小。

      图  8  在不同深空网下的初始定轨误差(1σ)

      Figure 8.  Orbit determination errors of LISA-1 using different deep space nets(1σ)

      联合DSN/CDSN,尤其在跟踪弧段较短的时候,可提高收敛速度,从图8中可看出,当定轨弧长在7 d内,多深空网对定轨精度提升效果较明显。另外,统计分析不同定轨弧长[2,3,5,7,10,15,20,25,30]d时的定轨结果,可得基于DSN/CDSN组合网络的LISA-1轨道的位置平均误差为157.312 2 m,速度平均误差为6.0 mm/s;与相同情况下基于DSN的定轨结果相比较,平均位置估计精度提高43.73%,平均速度估计精度提高43.40%。

    • 本文对基于深空网的空间引力波探测器——LISA 探测器定轨进行了仿真分析,采用无线电测距、测速方法对LISA进行跟踪观测,利用非线性加权最小二乘批处理、蒙特卡洛方法分析了跟踪弧长、测轨数据类型、测站数量和分布对LISA探测器精密定轨的影响。当定轨弧长达到20 d后,定轨精度的提高效果随跟踪弧长的增加变得缓慢。随后采用不同观测类型数据进行分析组合定轨策略:测距信息对定轨影响较大,且对轨道径向有着较强的约束;仅测速数据无法实现精密定轨;在DSN测控体系中,对深空探测器精密定轨以测速为主,只有非常少量的测距数据,测速辅以少量的测距数据,可以实现测距和测速的优势互补。最后,分析了DSN和CDSN对LISA-1的观测几何约束情况,DSN/CDSN联合观测可有效增加多站共视比率;统计[2,3,5,7,10,15,20,25,30]d定轨弧长精密定轨后的平均精度,DSN/CDSN位置平均误差为157.3122 m,较DSN定轨的位置估计精度提高了43.73%。

      本文的仿真方法和结果分析对天琴计划[18]、太极计划[19]等其它空间引力波探测计划探测器的精密轨道确定具有一定的参考意义。

参考文献 (19)

目录

    /

    返回文章
    返回