中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外日球层的宽能段离子及其与湍动的耦合作用

何建森 林荣 崔博 王玲华 宗秋刚

何建森, 林荣, 崔博, 王玲华, 宗秋刚. 外日球层的宽能段离子及其与湍动的耦合作用[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200064
引用本文: 何建森, 林荣, 崔博, 王玲华, 宗秋刚. 外日球层的宽能段离子及其与湍动的耦合作用[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200064
HE Jiansen, LIN Rong, CUI Bo, WANG Linghua, ZONG Qiugang. Broad Energy-Band Ions in the Heliosphere and Their Coupling with Turbulence[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200064
Citation: HE Jiansen, LIN Rong, CUI Bo, WANG Linghua, ZONG Qiugang. Broad Energy-Band Ions in the Heliosphere and Their Coupling with Turbulence[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200064

外日球层的宽能段离子及其与湍动的耦合作用

doi: 10.15982/j.issn.2096-9287.2020.20200064
基金项目: 民用航天技术预研空间科学资助项目(D020301);国家自然科学学基金资助项目(41874200)
详细信息
    作者简介:

    何建森(1981– ),男,研究员,主要研究方向:空间等离子体湍流、空间等离子体磁重联、太阳风的起源与演化。通讯地址:北京大学物理楼北楼429室(100871)E-mail:jshept@pku.edu.cn

  • ● This paper points out that the broad energy-band ion spectrum and its coupling with the turbulence is one of the key windows to understand the interaction process between the heliosphere and the local interstellar medium. ● This work provides a brief review of the current cognition of the heliosphere, summarizes three related cutting-edge issues, and proposes the corresponding exploration suggestions for the future program.
  • 中图分类号: P353

Broad Energy-Band Ions in the Heliosphere and Their Coupling with Turbulence

  • 摘要: 围绕“日球层太阳风及其与侵入星际风的作用”这个主题,从目前认知、前沿问题、探测建议等3方面展开论述。日球层中的离子包括:原初太阳风离子、源于星际风的拾起离子、超热离子。其中拾起离子和超热离子有来自局地星际质侵入流的贡献。深空飞船探测到双模态遍布日球层:日球层内边界、太阳风、行星际湍动、超热离子能谱等都存在双模态特征。前沿问题有3个方面:①从未到达的领域,即黄道面里的日球层尾部以及高纬的外日球层;②曾经到达的领域,但是没有探测的物理量,例如外日球层中的拾起离子;③曾经到达并探测,但是形成机制不明,例如超热离子的幂律谱及其双模态。针对上述前沿问题,本文提出如下的建议:①设计不同的飞行路径,朝向不同的方位进行探测;②携带宽能段的离子谱仪器包涵盖原初太阳风等离子体、拾起离子和超热离子;③搭载高灵敏度磁强计测量外日球层的可压缩磁湍动。
    Highlights
    ● This paper points out that the broad energy-band ion spectrum and its coupling with the turbulence is one of the key windows to understand the interaction process between the heliosphere and the local interstellar medium. ● This work provides a brief review of the current cognition of the heliosphere, summarizes three related cutting-edge issues, and proposes the corresponding exploration suggestions for the future program.
  • 图  1  太阳系的时空坐标系

    注:太阳系在时空坐标系下的三大重要科学命题:太阳系目前状态是什么(包括太阳风与星际介质相互作用到底如何)(淡红色云团及其中问号标记)、太阳系从哪儿来(太阳系的起源)(淡蓝色云团及其中问号标记)、太阳系将往何处去(太阳系的宿命)(淡绿色云团及其中问号标记)。

    Fig.  1  The Solar system in the space-time coordinate system

    图  2  5个维度的深空探测能力雷达图

    Fig.  2  Five-dimensional deep space detection capability radar chart

    图  3  宽能段的日球层离子相空间密度谱在不同日心距离处的变化[24]

    Fig.  3  The variation of the phase space density spectrum of the heliosphere ion in the wide energy range at different heliocentric distances[24]

    图  4  “旅行者2号”飞船的日心距离、纬度随时间的变化

    Fig.  4  The distance and latitude of the Voyager 2 spacecraft change over time

    图  5  “旅行者1号”飞船上CRS载荷探测不同能档高能粒子的微分通量密度随飞行时间的变化

    Fig.  5  The differential flux density of the CRS payload on the Voyager 1 spacecraft detects high-energy particles with different energy levels as a function of flight time

    图  6  日球层太阳风及其湍动的双模态

    Fig.  6  The dual mode of the heliospheric solar wind and its turbulence

    图  7  宽能段离子的相空间密度谱在低速流和高速流中的差异

    Fig.  7  The difference between the phase space density spectrum of the wide-energy band ion in the low-speed path and the high-speed flow

    图  8  日球层可能的形状

    Fig.  8  The shape of the heliosphere under different local interstellar medium assumptions

    图  9  “新视野号”飞船上SWAP载荷测量到的离子计数率随单位电荷能量的变化剖面

    Fig.  9  The change profile of ion count rate with unit charge energy measured by SWAP load on New Horizons spacecraft

    图  10  “旅行者号”飞船在不同年份对超热离子和能量粒子(宇宙线)的测量能谱与三维可压缩湍动的模拟结果

    Fig.  10  The measured energy spectra of the hot ions and energetic particles(cosmic rays)of the Voyager spacecraft in different years and three dimention simulation results of compressible turbulence

    图  11  日球层结构示意图

    Fig.  11  The schematic diagram shows the structure of the heliosphere

    表  1  针对外日球层太阳风与侵入星际介质流的宽能段粒子测量的探测

    Table  1  Detection suggestion table for the measurement of wide-energy particles in the outer heliosphere solar wind and intrusive interstellar medium flow

    载荷 能量范围 探测对象 可选方案
    太阳风法拉第杯 10 eV~12 keV 原初太阳风离子(H+,He++ 法拉第杯(FC)
    太阳风静电分析仪 100 eV~20 keV 原初太阳风离子;部分星际风拾起离子
    (H+,He+
    静电分析仪(ESA)
    拾起离子质谱仪 5 eV~80 keV 星际风拾起离子(H+,He+,N+,O+);
    部分超热离子
    静电分析仪(ESA)+飞行时间技术
    (TOF)+ 固态半导体(SSD)
    超热离子谱仪 30 keV~5 MeV 湍动加速的超热离子 (双层)固态半导体SSD
    下载: 导出CSV
  • [1] BURCH J L,MOORE T E,TORBERT R B,et al. Magnetospheric multiscale overview and science objectives[J]. Space Science Reviews,2016,199(1-4):5-21. doi:  10.1007/s11214-015-0164-9
    [2] BURLAGA L F,NESS N F. Merged interaction regions observed by Voyagers 1 and 2 during 1998[J]. Journal of Geophysical Research:Space Physics,2000,105(A3):5141-5148. doi:  10.1029/1999JA000379
    [3] DRAKE J F,SWISDAK M,FERMO R. The power-law spectra of energetic particles during multi-island magnetic reconnection[J]. The Astrophysical Journal Letters,2012,763(1):1-5.
    [4] FAHR H J,SCHERER K. Diamagnetic solar wind ions changing the MHD conditions at the heliospheric termination shock[J]. Journal of Geophysical Research:Space Physics,2005,110(A2):1-5.
    [5] FISK L A,GLOECKLER G. Acceleration of suprathermal tails in the solar wind[J]. The Astrophysical Journal,2008,686(2):1466-1473. doi:  10.1086/591543
    [6] FISK L A,GLOECKLER G. The case for a common spectrum of particles accelerated in the heliosphere:Observations and theory[J]. Journal of Geophysical Research:Space Physics,2014,119(11):8733-8749. doi:  10.1002/2014JA020426
    [7] GAN W Q,ZHU C,DENG Y Y,et al. Advanced Space-based Solar Observatory(ASO-S):an overview[J]. Research in Astronomy and Astrophysics,2019,19(11):1-9.
    [8] GLOECKLER G. Ubiquitous suprathermal tails on the solar wind and pickup ion distributions[C]//Solar Wind Ten: Proceedings of the Tenth International Solar Wind Conference. [S. l.]: American Institute of Physics, 2003.
    [9] GLOECKLER G,SCHWADRON N A,FISK L A,et al. Weak pitch angle scattering of few MV rigidity ions from measurements of anisotropies in the distribution function of interstellar pickup H+[J]. Geophysical Research Letters,1995,22(19):2665-2668. doi:  10.1029/95GL02480
    [10] HE J S,ZHU X,VERSCHAREN D,et al. Spectra of diffusion,dispersion,and dissipation for kinetic alfvénic and compressive turbulence:comparison between kinetic theory and measurements from MMS[J]. The Astrophysical Journal,2020,898(1):43. doi:  10.3847/1538-4357/ab9174
    [11] INTRILIGATOR D S,SISCOE G L,MILLER W D. Interstellar pickup H+ ions at 8.3 AU:Pioneer 10 plasma and magnetic field analyses[J]. Geophysical research letters,1996,23(16):2181-2184. doi:  10.1029/96GL02052
    [12] KALLENBACH R,GEISS J,GLOECKLER G,et al. Pick-up ion measurements in the heliosphere–a review[J]. Astrophysics and Space Science,2000,274(1-2):97-114.
    [13] KASPER J C,ABIAD R,AUSTIN G,et al. Solar wind electrons alphas and protons(SWEAP)investigation:design of the solar wind and coronal plasma instrument suite for solar probe plus[J]. Space Science Reviews,2016,204(1-4):131-186. doi:  10.1007/s11214-015-0206-3
    [14] KÖÖP L,HECK P R,BUSEMANN H,et al. High early solar activity inferred from helium and neon excesses in the oldest meteorite inclusions[J]. Nature Astronomy,2018,2(9):709-713. doi:  10.1038/s41550-018-0527-8
    [15] LEE M A,FAHR H J,KUCHAREK H,et al. Physical processes in the outer heliosphere[J]. Space Science Reviews,2009,146(1-4):275-294. doi:  10.1007/s11214-009-9522-9
    [16] LEWIS J. Physics and chemistry of the solar system[M]. SanDiego: Academic Press, 2012.
    [17] LIVADIOTIS G,MCCOMAS D J,SCHWADRON N A,et al. Pressure of the proton plasma in the inner heliosheath[J]. The Astrophysical Journal,2012,762(2):134.
    [18] MARSCH E,MHLHÄUSER K H,SCHWENN R,et al. Solar wind protons:Three‐dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU[J]. Journal of Geophysical Research:Space Physics,1982,87(A1):52-72. doi:  10.1029/JA087iA01p00052
    [19] MCCOMAS D J,BAME S J,BARRACLOUGH B. L,et al Ulysses' return to the slow solar wind[J]. Geophysical Research Letters,1998,25(1):1-4. doi:  10.1029/97GL03444
    [20] MCCOMAS D J,ALLEGRINI F,BOCHSLER P,et al. Global observations of the interstellar interaction from the Interstellar Boundary Explorer(IBEX)[J]. Science,2009,326(5955):959-962. doi:  10.1126/science.1180906
    [21] MCCOMAS D J,ZIRNSTEIN E J,BZOWSKI M,et al. Interstellar pickup ion observations to 38 AU[J]. The Astrophysical Journal Supplement Series,2017,233(1):1-14. doi:  10.3847/1538-4365/233/1/1
    [22] MCCOMAS D J,CHRISTIAN E R,SCHWADRON N A,et al. Interstellar mapping and acceleration probe(IMAP):a new NASA mission[J]. Space Science Reviews,2018,214(8):1-54.
    [23] OPHER M,LOEB A,DRAKE J,et al. A small and round heliosphere suggested by magnetohydrodynamic modelling of pick-up ions[J]. Nature Astronomy,2020,4(7):675-683. doi:  10.1038/s41550-020-1036-0
    [24] SUESS S T. The heliopause[J]. Reviews of Geophysics,1990,28(1):97-115. doi:  10.1029/RG028i001p00097
    [25] PARKER E N. Dynamics of the interplanetary gas and magnetic fields[J]. The Astrophysical Journal,1958,128:664-676. doi:  10.1086/146579
    [26] PARKER E N. The Stellar-Wind Regions[J]. The Astrophysical Journal,1961,134:20-27. doi:  10.1086/147124
    [27] RICHARDSON J D,BELCHER J W,GARCIA-GALINDO P,et al. Voyager 2 plasma observations of the heliopause and interstellar medium[J]. Nature Astronomy,2019,3(11):1019-1023. doi:  10.1038/s41550-019-0929-2
    [28] RICHARDSON J D,KASPER J C,WANG C,et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock[J]. Nature,2008,454(7200):63-66. doi:  10.1038/nature07024
    [29] STONE E C,FRANDSEN A M,MEWALDT R A,et al. The advanced composition explorer[J]. Space Science Reviews,1998,86(1-4):1-22.
    [30] STONE E C,CUMMINGS A C,MCDONALD F B,et al. Voyager 1 explores the termination shock region and the heliosheath beyond[J]. Science,2005,309(5743):2017-2020. doi:  10.1126/science.1117684
    [31] STONE E C,CUMMINGS A C,MCDONALD F B,et al. Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions[J]. Science,2013,341(6142):150-153. doi:  10.1126/science.1236408
    [32] TU C Y,MARSCH E. MHD structures,waves and turbulence in the solar wind:Observations and theories[J]. Space Science Reviews,1995,73(1-2):1-210. doi:  10.1007/BF00748891
    [33] TU C Y,ZHOU C,MARSCH E,et al. Solar wind origin in coronal funnels[J]. Science,2005,308(5721):519-523. doi:  10.1126/science.1109447
    [34] VASYLIUNAS V M,SISCOE G L. On the flux and the energy spectrum of interstellar ions in the solar system[J]. Journal of Geophysical Research,1976,81(7):1247-1252. doi:  10.1029/JA081i007p01247
    [35] WANG C,RICHARDSON J D. Energy partition between solar wind protons and pickup ions in the distant heliosphere:A three‐fluid approach[J]. Journal of Geophysical Research:Space Physics,2001,106(A12):29401-29407. doi:  10.1029/2001JA000190
    [36] YAO S,HE J S,MARSCH E,et al. Multi-scale anti-correlation between electron density and magnetic field strength in the solar wind[J]. The Astrophysical Journal,2011,728(2):1-6.
    [37] ZANK G P,MATTHAEUS W H,BIEBER J W,et al. The radial and latitudinal dependence of the cosmic ray diffusion tensor in the heliosphere[J]. Journal of Geophysical Research:Space Physics,1998,103(A2):2085-2097. doi:  10.1029/97JA03013
    [38] ZHAO L,ZURBUCHEN T H,FISK L A. Global distribution of the solar wind during solar cycle 23:ACE observations[J]. Geophysical Research Letters,2009,36(14):1-4.
    [39] 吴伟仁,于登云,黄江川,等. 太阳系边际探测研究[J]. 信息科学,2019,49(1):1-16. doi:  10.1360/N112018-00273

    WU W R,YU D Y,HUANG J C,et al. Exploring the solar system boundary[J]. Scientia Sininca Informations,2019,49(1):1-16. doi:  10.1360/N112018-00273
  • [1] 陈上上, 关轶峰, 于萍, 李骥, 张晓文.  基于粒子群优化的月球陨石坑探测轨迹规划 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191031007
    [2] 王玲华, 宗秋刚, 任杰.  太阳系边际的能量粒子探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200061
    [3] 宗秋刚, 任杰, 何建森, 王玲华.  从地球磁层到外日球层及以远区域探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200063
    [4] 郭孝城, 周昱成, 王赤, 李晖.  外日球层激波事件的一维磁流体力学数值模拟 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200059
    [5] 孔令高, 张爱兵, 田峥, 郑香脂, 王文静, 刘勇, 丁建京.  自主火星探测高集成离子与中性粒子分析仪 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.005
    [6] 王馨悦, 张爱兵, 荆涛, 孔令高, 张珅毅.  近月空间带电粒子环境——“嫦娥1号”“嫦娥2号”观测结果 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.002
    [7] 敖先志, 刘四清, 沈华, 王晶晶, 胡骏翔, 李刚.  2 AU以内的“渐进型”太阳高能粒子事件模拟 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.007
    [8] 逯运通, 张正峰, 傅子敬, 张旭辉.  一种深空粒子采样返回探测器构型设想 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.014
    [9] 侯东辉, 张珅毅, RobertFWimmer-Schweingruber, 于佳, SoenkeBurmeister, 沈国红, 袁斌, 王春琴, 张斌全.  月球粒子辐射环境探测现状 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.003
    [10] 杨涛, 邵志杰, 蔡明辉, 贾鑫禹, 韩建伟.  空间高能粒子与器件布线层核反应后次级粒子LET分布研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.009
    [11] 柯森锎, 李爽, 肖东东, 王卫华, 聂钦博.  基于高斯伪谱法的火星表面上升燃耗最优轨迹设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.6.009
    [12] 何芸, 刘祺, 田伟, 段会宗, 叶贤基, 范淑华, 李语强.  地月第二拉格朗日点卫星激光测距技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.005
    [13] 韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛.  脉冲激光模拟空间载荷单粒子效应研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.12.012
    [14] 王馨悦, 孙越强, 李永平, 唐萍.  质谱计在行星系统与小天体探测中的应用 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.06.004
    [15] 葛丹桐, 崔平远.  地外天体着陆点选择综述与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.03.001
    [16] 姜生元, 朴松杰, 张伟伟, 沈毅, 侯绪研, 全齐全, 邓宗全.  地外天体潜入式探测典型案例分析及展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.011
    [17] 汪梁, 赵方方, 陈翠桥, 徐照钱.  粒子过滤在自主天文导航系统中的性能评估和应用 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.03.008
    [18] 袁旭, 朱圣英.  基于伪谱法的小天体最优下降轨迹优化方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.008
    [19] 倪彦硕, 施伟璜, 杨洪伟, 宝音贺西, 李俊峰.  利用Breakwell间距比法制定行星际探测中途修正策略 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.013
    [20] 王峰, 杨波, 胡存明, 吴昊, 费晓星.  小行星探测用双谱段相机设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.02.012
  • 加载中
计量
  • 文章访问数:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2020-10-21
  • 网络出版日期:  2020-12-17

外日球层的宽能段离子及其与湍动的耦合作用

doi: 10.15982/j.issn.2096-9287.2020.20200064
    基金项目:  民用航天技术预研空间科学资助项目(D020301);国家自然科学学基金资助项目(41874200)
    作者简介:

    何建森(1981– ),男,研究员,主要研究方向:空间等离子体湍流、空间等离子体磁重联、太阳风的起源与演化。通讯地址:北京大学物理楼北楼429室(100871)E-mail:jshept@pku.edu.cn

  • ● This paper points out that the broad energy-band ion spectrum and its coupling with the turbulence is one of the key windows to understand the interaction process between the heliosphere and the local interstellar medium. ● This work provides a brief review of the current cognition of the heliosphere, summarizes three related cutting-edge issues, and proposes the corresponding exploration suggestions for the future program.
  • 中图分类号: P353

摘要: 围绕“日球层太阳风及其与侵入星际风的作用”这个主题,从目前认知、前沿问题、探测建议等3方面展开论述。日球层中的离子包括:原初太阳风离子、源于星际风的拾起离子、超热离子。其中拾起离子和超热离子有来自局地星际质侵入流的贡献。深空飞船探测到双模态遍布日球层:日球层内边界、太阳风、行星际湍动、超热离子能谱等都存在双模态特征。前沿问题有3个方面:①从未到达的领域,即黄道面里的日球层尾部以及高纬的外日球层;②曾经到达的领域,但是没有探测的物理量,例如外日球层中的拾起离子;③曾经到达并探测,但是形成机制不明,例如超热离子的幂律谱及其双模态。针对上述前沿问题,本文提出如下的建议:①设计不同的飞行路径,朝向不同的方位进行探测;②携带宽能段的离子谱仪器包涵盖原初太阳风等离子体、拾起离子和超热离子;③搭载高灵敏度磁强计测量外日球层的可压缩磁湍动。

注释:
1)  ● This paper points out that the broad energy-band ion spectrum and its coupling with the turbulence is one of the key windows to understand the interaction process between the heliosphere and the local interstellar medium. ● This work provides a brief review of the current cognition of the heliosphere, summarizes three related cutting-edge issues, and proposes the corresponding exploration suggestions for the future program.

English Abstract

何建森, 林荣, 崔博, 王玲华, 宗秋刚. 外日球层的宽能段离子及其与湍动的耦合作用[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200064
引用本文: 何建森, 林荣, 崔博, 王玲华, 宗秋刚. 外日球层的宽能段离子及其与湍动的耦合作用[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200064
HE Jiansen, LIN Rong, CUI Bo, WANG Linghua, ZONG Qiugang. Broad Energy-Band Ions in the Heliosphere and Their Coupling with Turbulence[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200064
Citation: HE Jiansen, LIN Rong, CUI Bo, WANG Linghua, ZONG Qiugang. Broad Energy-Band Ions in the Heliosphere and Their Coupling with Turbulence[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200064
参考文献 (39)

返回顶部

目录

    /

    返回文章
    返回