中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同位素温差电池用高效热电转换材料与器件研究进展

柏胜强 廖锦城 夏绪贵 陈立东

柏胜强, 廖锦城, 夏绪贵, 陈立东. 同位素温差电池用高效热电转换材料与器件研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200062
引用本文: 柏胜强, 廖锦城, 夏绪贵, 陈立东. 同位素温差电池用高效热电转换材料与器件研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200062
BAI Shengqiang, LIAO Jingchen, XIA Xugui, CHEN Lidong. Research Progress of Thermoelectric Materials and Devices for Radioisotope Thermoelectric Generators[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200062
Citation: BAI Shengqiang, LIAO Jingchen, XIA Xugui, CHEN Lidong. Research Progress of Thermoelectric Materials and Devices for Radioisotope Thermoelectric Generators[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200062

同位素温差电池用高效热电转换材料与器件研究进展

doi: 10.15982/j.issn.2096-9287.2020.20200062
基金项目: 民用航天技术预先研究资助项目(D030202)
详细信息
    作者简介:

    柏胜强(1979– )男,正高级工程师,主要研究方向:热电材料、热电器件、热电转换技术。通讯地址:上海市嘉定区和硕路585号(201899)电话:(021)69163532 E-mail:bsq@mail.sic.ac.cn

  • ● The research progress of radioisotope thermoelectric generator is reviewed. ● The latest research progress of high-efficiency thermoelectric conversion materials and devices is introduced. ● Considering the requirements of future deep space exploration, the development ideas of thermoelectric conversion materials and device technologies for RTG are put forward.
  • 中图分类号: V43

Research Progress of Thermoelectric Materials and Devices for Radioisotope Thermoelectric Generators

  • 摘要: 同位素温差电池(Radioisotope Thermoelectric Generator,RTG)自20世纪60年代以来在深空探测领域获得长期应用。综述了同位素温差电池的主要特点和关键技术,介绍了高效热电转换材料与器件最新研究进展,结合未来深空探测需求,提出同位素温差电池用热电转换材料与器件技术的发展思路。
    Highlights
    ● The research progress of radioisotope thermoelectric generator is reviewed. ● The latest research progress of high-efficiency thermoelectric conversion materials and devices is introduced. ● Considering the requirements of future deep space exploration, the development ideas of thermoelectric conversion materials and device technologies for RTG are put forward.
  • 图  1  典型核电源系统的能量转换

    Fig.  1  Energy conversion of typical space nuclear power

    图  2  典型RTG结构中热电转换器件的不同安装方式

    Fig.  2  Installation structure in two typical RTG

    图  3  美国RTG技术的发展进程

    Fig.  3  Develop process of RTG in USA

    图  4  同位素温差电池结构框架图

    Fig.  4  The structural frame of RTG

    图  5  近年来热电材料性能优值的发展历程

    Fig.  5  Dimensionless figure of merit for thermoelectric materials in recent years

    图  6  典型热电材料性能优值与成本

    Fig.  6  Dimensionless figure of merit and cost for typical thermoelectric materials

    图  7  近年来热电器件转换效率的发展

    Fig.  7  Conversion efficiency for thermoelectric modules in recent years

    图  8  热电器件全参数优化设计逻辑框架与典型设计结果

    Fig.  8  Logic framework and typical results of full parameter optimization design for thermoelectric devices

    图  9  钎焊工艺制备热电器件过程(以方钴矿为例)

    Fig.  9  Integration process for SKD thermoelectric devices using brazing method

    图  10  热电器件失效模式逻辑框架图

    Fig.  10  Failure mode logic diagram for thermoelectric devices

    表  1  美国空间用RTG的主要型号及其性能参数

    Table  1  Typical RTG model of USA and their performance

    参数SNAP-3BSNAP-19MHW-RTGGPHS-RTGMMRTG
    电功率(BOM)/We2.740170300125
    输出电压/V5.616303028
    热功率(BOM)/Wth536102 4004 5002 000
    热源质量/kg0.121.234.89.05.0
    热电转换材料Pb-TeTAGS-SnTe/PbTeSi-GeSi-GeTAGS-SnTe/PbTe
    电池效率(BOM)/ %4.56.56.76.76.4
    电池质量/kg5.215.036.060.044.0
    质量比功率/(W·kg-10.522.74.75.02.8
    设计寿命/年510101517
    下载: 导出CSV

    表  2  美国JPL的MMRTG与eMMRTG主要性能参数对比[15]

    Table  2  Comparison of the design parameters of the MMRTG and eMMRTG systems[15]

    设计参数MMRTGEnhanced MMRTG
    热电转换材料PbTe/(TAGS 85,PbSnTe)SKD
    热电偶对数768768
    热功率(BOM)/Wth1 984待定
    热电偶热面温度/℃525600
    热电偶冷面温度/℃100~200100~200
    初始电功率(BOM)/We约120约145~170
    14年末电功率(EOM)/We60~90~105
    电池效率(BOM)/%6.07.6~8.3
    质量比功率/(W·kg-12.8~3.6~4.2
    下载: 导出CSV

    表  3  两个百毫瓦级同位素温差电池主要参数[17]

    Table  3  The performance for two mini-RTGs[17]

    参数Angel-RTG238Pu同位素温差电池
    电功率/We0.220.372
    电压/V152.99
    燃料238PuO2238PuO2
    热功率/Wth8.511.2
    热电转换材料Bi-TeBi-Te
    热面温度/℃160153.8
    效率/%2.63.3
    尺寸/mmΦ85 × 125Φ85 × 150(含散热器)
    质量/kg0.51.4(含散热器)
    寿命/a10 ≥ 3
    下载: 导出CSV

    表  4  我国现有热电器件的主要性能参数[19]

    Table  4  Performance of typical thermoelectric modules in China[19]

    性能参数单级器件级联器件
    材料体系Bi2Te3PbTeSKDHHSiGeSKD+Bi2Te3HH+Bi2Te3
    热面工作温度/℃ < 300 < 550 < 600 < 850 < 1000 < 600 < 850
    最大转换效率/%6~7~710.410.5~71212.4
    面功率密度/(W·cm–20.50.81~1.52~3.50.5~1~1.5~1.5
    功率质量比/(W·kg–1~120150~200250~300250~350300~350250~350250~350
    功率体积比/(W·cm–3~0.50.51~22~30.6~1~2~2
    下载: 导出CSV
  • [1] 吴伟仁,刘继忠,唐玉华,等. 中国探月工程[J]. 深空探测学报(中英文),2019,6(5):405-416.

    WU W R,LIU J Z,TANG Y H,et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416.
    [2] 叶培建,彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学,2006,8(10):13-18. doi:  10.3969/j.issn.1009-1742.2006.10.003

    YE P J,PENG J. Deep space exploration and its prospect in China[J]. Engineering Science,2006,8(10):13-18. doi:  10.3969/j.issn.1009-1742.2006.10.003
    [3] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17.

    WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17.
    [4] 朱安文,刘磊,马世俊,等. 空间和动力在深空探测中的应用及发展综述[J]. 深空探测学报(中英文),2017,4(5):397-404.

    ZHU A W,LIU L,MA S J,et al. An overview of the use and development of nuclear power system in deep space exploration[J]. Journal of Deep Space Exploration,2017,4(5):397-404.
    [5] 张建中,任保国,王泽深,等. 放射性同位素温差发电器在深空探测中的应用[J]. 宇航学报,2008,29(2):644-647. doi:  10.3873/j.issn.1000-1328.2008.02.047

    ZHANG J Z,REN B G,WANG Z S,et al. Radioisotope thermoelectric generators in deep space exploration[J]. Journal of Astronautics,2008,29(2):644-647. doi:  10.3873/j.issn.1000-1328.2008.02.047
    [6] 吴伟仁,刘继忠,赵小津,等. 空间核反应堆电源研究[J]. 中国科学:技术科学,2019,49(1):1-12. doi:  10.1360/N092018-00374

    WU W R,LIU J Z,ZHAO X J,et al. System engineering research and application foreground of space nuclear reactor power generators[J]. Science Sinica Technologica,2019,49(1):1-12. doi:  10.1360/N092018-00374
    [7] 胡古,赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报(中英文),2017,4(5):430-443.

    HU G,ZHAO S Z. Overview of space nuclear reactor power technology[J]. Journal of Deep Space Exploration,2017,4(5):430-443.
    [8] 周彪,吉宇,孙俊,等. 空间核反应堆电源需求分析研究[J]. 原子能科学技术,2020,54(10):1912-1923.
    [9] 陈杰,高劭伦,夏陈超,等. 空间堆核动力技术选择研究[J]. 上海航天,2019,36(6):1-10.

    CHEN J,GAO S L,XIA C C,et al. Study on space nuclear power technological option[J]. Aerospace Shanghai,2019,36(6):1-10.
    [10] 张建中. 温差电技术[M]. 天津: 天津科学技术出版社, 2013.

    ZHANG J Z. Thermoelectric technology[M]. Tianjin: Tianjin Science and Technology Press, 2013.
    [11] 宋馨,陈向东,雷英俊,等. 嫦娥四号着陆器月夜热电联供系统设计与验证[J]. 航天器工程,2019,28(4):65-69.

    SONG X,CHEN X D,LEI Y J,el al. Design and verification of heat and electricity cogeneration system in moon night of Chang’e-4 lander[J]. Spacecraft Engineering,2019,28(4):65-69.
    [12] 彭磊,侯旭峰,阎勇,等. 嫦娥四号着陆器同位素温差电池设计与验证[J]. 电源技术,2020,44(4):607-612. doi:  10.3969/j.issn.1002-087X.2020.04.033

    PENG L,HOU X F,YAN Y,et al. Design and verification of radioisotope thermoelectric generator for Chang’e-4 lander[J]. Chinese Journal of Power Sources,2020,44(4):607-612. doi:  10.3969/j.issn.1002-087X.2020.04.033
    [13] PUSTOVALOV A. Mini-RTGs on plutonium-238: development and application[C]//Proceedings of Eighteenth International Conference on Thermoelectrics. Baltimore, MD, USA: IEEE, 1999.
    [14] ROWE D M. CRC handbook of Thermoelectrics[M]. New York: CRC Press, 1995.
    [15] EL-GENK M S,SABER H H. Radioisotope power systems with skutterudite-based thermoelectric converters[J]. Space Technology and Applications International Forum-Staif,2005,746(1):485-494.
    [16] HOLGATE T C,BENNETT R,HAMMEL T,et al. Increasing the efficiency of the multi-mission radioisotope thermoelectric generator[J]. Journal of Electronic Materials,2015,44(6):1814-1821. doi:  10.1007/s11664-014-3564-9
    [17] 蔡善钰,何舜尧. 空间放射性同位素电池发展回顾和新世纪应用前景[J]. 核科学与工程,2004,24(2):97-104. doi:  10.3321/j.issn:0258-0918.2004.02.001

    CAI S Y,HE S Y. Retrospection of development for radioisotope power systems in space and its prospect of application in new century[J]. Chinese Journal of Nuclear Science and Engineering,2004,24(2):97-104. doi:  10.3321/j.issn:0258-0918.2004.02.001
    [18] 侯旭峰. 百毫瓦同位素温差电池技术研究[D]. 天津: 天津大学, 2014.

    HOU X F. Study on technology of the hundred milli-watt radioisotope thermoelectric generator[D]. Tianjin: Tianjin University, 2014.
    [19] SHI X L,ZOU J,CHEN Z G. Advanced thermoelectric design:from materials and structures to devices[J]. Chemical Reviews,2020,120(5):7399-7515.
    [20] 陈立东, 刘睿恒, 史迅. 热电材料与器件[M]. 北京: 科学出版社, 2017.

    CHEN L D, LIU R H, SHI X. Thermoelectric materials and devices[D]. Beijing: Science Press, 2017.
    [21] ZHU T J,FU C G,XIE H H,et al. High efficiency half-Heusler thermoelectric materials for energy harvesting[J]. Advanced Energy Materials,2015,19(5):1-13.
    [22] FU C G,BAI S Q,LIU Y T,et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[J]. Nature Communications,2015,8144:1-7.
    [23] XING Y F,LIU R H,SUN Y Y,et al. Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials:reaction mechanism and applicability[J]. Journal of Materials Chemistry A,2018,40(6):19470-19478.
    [24] ZHAO W Y,LIU Z Y,SUN Z G,et al. Superparamagnetic enhancement of thermoelectric performance[J]. Nature,2017,549(7671):247-251. doi:  10.1038/nature23667
    [25] SHI X,YANG J,SALVADOR J R,et al. Multiple-filled skutterudites:high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society,2011,133(20):7837-7846. doi:  10.1021/ja111199y
    [26] ROGL G,GRYTSIV A,ROGL P,et al. Multifilled nanocrystalline p-type didymium - Skutterudites with ZT > 1.2[J]. Intermetallics,2010,18(12):2435-2444. doi:  10.1016/j.intermet.2010.08.041
    [27] 张骐昊,柏胜强,陈立东. 热电发电器件与应用技术:现状、挑战与展望[J]. 无机材料学报,2019,34(3):279-293. doi:  10.15541/jim20180465

    ZHANG Q H,BAI S Q,CHEN L D. Technologies and applications of thermoelectric devices:current status,Challenges and prospects[J]. Journal of Inorganic Materials,2019,34(3):279-293. doi:  10.15541/jim20180465
    [28] LIU W S,BAI S Q. Thermoelectric interface materials:a perspective to the challenge of thermoelectric power generation module[J]. Journal of Materiomics,2019,5:321-336. doi:  10.1016/j.jmat.2019.04.004
    [29] 邵笑,刘睿恒,王亮,等. 服役条件下方钴矿基热电元件的界面应力分析[J]. 无机材料学报,2019,35(2):225-234.

    SHAO X,LIU R H,WANG H,et al. Interfacial stress analysis on skutterudite-based thermoelectric joints under service conditions[J]. Journal of Inorganic Materials,2019,35(2):225-234.
    [30] ZHANG Q H,LIAO J C,TANG Y S,et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[J]. Energy & Environmental Science,2017,10:956-963.
    [31] ZONG P A,HANUS R,DYLLA M,et al. Skutterudite with graphene-modified grain-boundary complexion enhances ZT enabling high-efficiency thermoelectric device[J]. Energy & Environmental Science,2017,10(1):183-91.
    [32] ZHANG Q,ZHOU Z,DYLLA M,et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites[J]. Nano Energy,2017,41:501-510. doi:  10.1016/j.nanoen.2017.10.003
    [33] CHU J,HUANG J,LIU R,et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices[J]. Nature Communications,2020,11(1):2723. doi:  10.1038/s41467-020-16508-x
    [34] XING Y F,LIU R H,LIAO J C,et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization[J]. Energy & Environmental Science,2019,12(11):3390-3399.
    [35] XING Y F,LIU R H,LIAO J C,et al. A device-to-material strategy guiding the “double-high” thermoelectric module[J]. Joule,2020,4(11):2475-2483. doi:  10.1016/j.joule.2020.08.009
    [36] 缪力威. Kilopower与KRUSTY的发展脉络及研发现状[J]. 科技创新导报,2020(17):65-69.
    [37] 彭磊,谢奇林,范晓强,等. 星球表面探测用核反应堆电源初步研究[J]. 载人航天,2015,21(3):237-242. doi:  10.3969/j.issn.1674-5825.2015.03.006

    PENG L,XIE Q L,FAN X Q,et al. Preliminary study on nuclear reactor power source for planetary surface explorations[J]. Manned Spaceflight,2015,21(3):237-242. doi:  10.3969/j.issn.1674-5825.2015.03.006
    [38] 姚成志,胡古,解家春,等. 月球基地核电源系统方案研究[J]. 原子能科学技术,2016,50(3):464-470. doi:  10.7538/yzk.2016.50.03.0464

    YAO C Z,HU G,XIE J C,et al. Scheme research of nuclear reactor power system for lunar base[J]. Atomic Energy Science and Technology,2016,50(3):464-470. doi:  10.7538/yzk.2016.50.03.0464
    [39] 马季军,何小斌,乔卫新,等. 载人月球任务能源系统初探[J]. 载人航天,2019,25(2):143-150.

    MA J J,HE X B,QIAO W X,et al. Research on energy system in manned lunar mission[J]. Manned Spaceflight,2019,25(2):143-150.
  • [1] 乔学荣, 郭际, 米娟.  高比能量锂氟化碳电池在深空探测器上的应用试验研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191223001
    [2] 郑见杰, 杜园, 王炜娜, 罗广求, 刘治钢.  深空探测用锂离子蓄电池在轨管理策略研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191030001
    [3] 王文强, 杨洪东, 杨广, 王佳禹, 吴庆, 顾春杰.  太阳电池阵深空探测适应性设计概论 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191101003
    [4] 艾素芬, 向艳超, 雷尧飞, 薛淑艳, 沈宇新, 殷雷, 刘佳, 陈维强.  火星车低密度纳米气凝胶隔热材料制备及性能研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200036
    [5] 钟武烨, 赵守智, 郑剑平, 吕征, 解家春.  空间热离子能量转换技术发展综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20200114001
    [6] 石海平, 陈燕, 贾阳, 屈严, 刘治钢, 王文强, 彭松.  太阳电池阵火星环境发电建模仿真 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200042
    [7] 罗洪义, 牛厂磊, 吴胜娜, 李鑫, 唐显, 罗志福.  深空探测中的钚-238同位素电源 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191129001
    [8] 胡文军, 刘继忠, 唐玉华, 陈军红, 张玮, 张哲, 李上明, 胡绍全.  空间同位素热/电源安全性技术指标体系框架研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190911001
    [9] 杨涛, 邵志杰, 蔡明辉, 贾鑫禹, 韩建伟.  空间高能粒子与器件布线层核反应后次级粒子LET分布研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.009
    [10] 金海波, 凌晨, 李静波.  航天器用可变发射率热控器件的研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.02.012
    [11] 黄护林, 李林永, 李来, 刘飞标.  等离子体磁流体发电研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.04.003
    [12] 高博, 陈楠, 周舒, 童玲.  粉末材料的变温介电常数测量 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.6.012
    [13] 任德鹏, 李青, 彭松.  月面探测器燃料电池应用的初步研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.12.008
    [14] 胡宇鹏, 鲁亮, 向延华, 李思忠, 胡文军, 胡绍全.  深空探测器同位素热源环境试验技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.006
    [15] 鲁亮, 胡宇鹏, 欧阳智江, 向延华, 黄含军, 李思忠.  同位素热源高温-冲击复合环境试验 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.05.007
    [16] 张建琴, 徐建明, 贾巍, 邱宝贵, 肖杰.  深空探测太阳电池阵应用及关键技术分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.001
    [17] 张鹏飞, 梁龙, 陶积柏, 董薇, 宫顼, 张玉生, 黎昱.  深空环境下热防护材料的研究及应用进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.012
    [18] 贾巍, 倪家伟, 黄三玻, 宗魏, 肖杰, 王训春, 池卫英.  火星尘埃对太阳电池阵的影响与电帘除尘研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.04.010
  • 加载中
计量
  • 文章访问数:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2020-10-19
  • 网络出版日期:  2020-12-17

同位素温差电池用高效热电转换材料与器件研究进展

doi: 10.15982/j.issn.2096-9287.2020.20200062
    基金项目:  民用航天技术预先研究资助项目(D030202)
    作者简介:

    柏胜强(1979– )男,正高级工程师,主要研究方向:热电材料、热电器件、热电转换技术。通讯地址:上海市嘉定区和硕路585号(201899)电话:(021)69163532 E-mail:bsq@mail.sic.ac.cn

  • ● The research progress of radioisotope thermoelectric generator is reviewed. ● The latest research progress of high-efficiency thermoelectric conversion materials and devices is introduced. ● Considering the requirements of future deep space exploration, the development ideas of thermoelectric conversion materials and device technologies for RTG are put forward.
  • 中图分类号: V43

摘要: 同位素温差电池(Radioisotope Thermoelectric Generator,RTG)自20世纪60年代以来在深空探测领域获得长期应用。综述了同位素温差电池的主要特点和关键技术,介绍了高效热电转换材料与器件最新研究进展,结合未来深空探测需求,提出同位素温差电池用热电转换材料与器件技术的发展思路。

注释:
1)  ● The research progress of radioisotope thermoelectric generator is reviewed. ● The latest research progress of high-efficiency thermoelectric conversion materials and devices is introduced. ● Considering the requirements of future deep space exploration, the development ideas of thermoelectric conversion materials and device technologies for RTG are put forward.

English Abstract

柏胜强, 廖锦城, 夏绪贵, 陈立东. 同位素温差电池用高效热电转换材料与器件研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200062
引用本文: 柏胜强, 廖锦城, 夏绪贵, 陈立东. 同位素温差电池用高效热电转换材料与器件研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200062
BAI Shengqiang, LIAO Jingchen, XIA Xugui, CHEN Lidong. Research Progress of Thermoelectric Materials and Devices for Radioisotope Thermoelectric Generators[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200062
Citation: BAI Shengqiang, LIAO Jingchen, XIA Xugui, CHEN Lidong. Research Progress of Thermoelectric Materials and Devices for Radioisotope Thermoelectric Generators[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200062
参考文献 (39)

返回顶部

目录

    /

    返回文章
    返回