中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳系边际的能量粒子探测

王玲华 宗秋刚 任杰

王玲华, 宗秋刚, 任杰. 太阳系边际的能量粒子探测[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200061
引用本文: 王玲华, 宗秋刚, 任杰. 太阳系边际的能量粒子探测[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200061
WANG Linghua, ZONG Qiugang, REN Jie. Detection of Energetic Particles in the Outer Heliosphere and its Boundaries[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200061
Citation: WANG Linghua, ZONG Qiugang, REN Jie. Detection of Energetic Particles in the Outer Heliosphere and its Boundaries[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200061

太阳系边际的能量粒子探测

doi: 10.15982/j.issn.2096-9287.2020.20200061
基金项目: 国家自然科学基金资助项目(41774183,41861134033,41421003);民用航天“十三五”技术预先研究日球层边际探测重要科学问题资助项目(D020301)
详细信息
    作者简介:

    王玲华(1977– ),女,教授,博士生导师,主要研究方向:日球层能量粒子、空间能量粒子探测器。通讯地址:北京大学物理大楼北楼416室(100871)电话:(010)62767193 E-mail:wanglhwang@pku.edu.cn

  • ● Observations,theories and unsolved problems about solar wind suprathermal particles are systematically illustrated. ● The crucial role of superthermal particles in modulating the outer heliosphere and its boundaries is summarized. ● A new-generation energetic particle instrument is proposed to provide high-resolution measurements of energetic particles in the outer heliosphere and its boundaries.
  • 中图分类号: P35

Detection of Energetic Particles in the Outer Heliosphere and its Boundaries

  • 摘要: 太阳系能量粒子的起源、加速及传播一直是物理学和空间物理学的重要前沿课题。太阳系边际探测将为研究这一前沿课题提供至关重要的信息。在太阳系边际区域,源自太阳系的能量粒子主要分为两类:太阳风超热粒子和能量中性原子(Energetic Neutral Atoms,ENA)。这些能量粒子对太阳系边际的形态和动力学过程会有很强的调制作用。但是,现在仍然缺乏对太阳风超热粒子的高精度就位探测和对太阳系边际的高精度ENA成像这些关键观测手段。基于STEREO卫星上的STE仪器对太阳风超热粒子的高精度探测和对地球磁层的高精度ENA探测,建议采用低能量阈值的新一代半导体探测器,结合已成熟的调制狭缝成像系统,以实现对太阳系边际(和顺访行星的磁层)的高精度ENA成像和对太阳风超热粒子的高精度就位探测。这些高精度观测将会为认识太阳系与星际介质之间相互作用的动力学演化和太阳系能量粒子的起源、加速及传播这些前沿课题提供关键信息。
    Highlights
    ● Observations,theories and unsolved problems about solar wind suprathermal particles are systematically illustrated. ● The crucial role of superthermal particles in modulating the outer heliosphere and its boundaries is summarized. ● A new-generation energetic particle instrument is proposed to provide high-resolution measurements of energetic particles in the outer heliosphere and its boundaries.
  • 图  1  日球层的双激波结构的示意图

    Fig.  1  Illustration of the heliosphere

    图  2  在1 AU处的行星际电子速度分布函数[8]

    Fig.  2  Quiet-time interplanetary electron velocity distribution function observed by WIND at 1 AU [8]

    图  3  Ulysses飞船在4.8 AU处观测的平静时期太阳风超热质子的速度分布函数[31]

    Fig.  3  Quiet-time interplanetary proton velocity distribution function observed by Ulysses at 4.8 AU[31]

    图  4  ENA成像仪的调制栅格成像系统示意图

    Fig.  4  Schematic of the bi-grid subcollimators in ENA Imager,showing representative incident ENA with respect to the collimator axis

    图  5  STEIN仪器的电场偏转系统[49]

    Fig.  5  Schematic of electrostatic deflection system in STEIN instrument[49]

    表  1  太阳系边际能量粒子探测器的设计参数

    Table  1  Characteristics of the energetic particle instrument for the heliospheric boundary explorer

    粒子种类H,Oep
    能量范围/keV4~200(H)8~250(O)2~2004~200
    能量分辨率/keV111
    能档数161616
    采样率/s–1601010
    几何因子/cm2sr > 1 > 1 > 1
    视场角/(°)10 × 45180 × 20180 × 20
    下载: 导出CSV
  • [1] AXFORD W I. The interaction of the solar wind with the interstellar medium[R]. USA: NASA, 1972.
    [2] BARANOV V B. Gasdynamics of the solar wind interaction with the interstellar medium[R]. Space Science Reviews, 1990, 52: 89-120.
    [3] BARANOV V B,MALAMA Y G. The model of the solar wind interaction with the local interstellar medium:numerical solution of self-consistent problem[J]. Journal of Geophysical Research,1993,98:15157-15163. doi:  10.1029/93JA01171
    [4] BARANOV V B,MALAMA Y G. Effect of local interstellar medium hydrogen fractional ionization on the distant solar wind and interface region[J]. Journal of Geophysical Research,1995,100:14755-14761. doi:  10.1029/95JA00655
    [5] STONE E C,CUMMINGS A C,MCDONALD F B,et al. Voyager 1 explores the termination shock region and the heliosheath beyond[J]. Science,2005,309(5743):2017-2020. doi:  10.1126/science.1117684
    [6] Stone E C,CUMMINGS A C,MADONALD F B,et al. An asymmetric solar wind termination shock[J]. Nature,2008,454(7200):71-74. doi:  10.1038/nature07022
    [7] MCCOMAS D J,ALLEGRINI F,BOCHSLER P,et al. Global observations of the interstellar interaction from the Interstellar Boundary Explorer(IBEX)[J]. Science,2009,326(5955):959-962. doi:  10.1126/science.1180906
    [8] WANG L H,LIN R P,SALEM C,et al. Quiet-time interplanetary ~2–20 kev superhalo electrons at solar minimum[J]. The Astrophysical Journal Letters,2012,753(1):1-6. doi:  10.1088/0004-637X/753/1/1
    [9] Montgomery M D,BAME S J,HUNDHAUSEN A J,et al. Solar wind electrons:vela 4 measurements[J]. Journal of Geophysical Research,1963,73(15):4999-5003.
    [10] ROSENBAUER H,SCHWENN R,MARSCH E,et al. A survey on initial results of the HELIOS plasma experiment[J]. Journal of Geophysical Research,1977,42(6,19):561-580.
    [11] PILIPP W G,MIGGENNIEDER H,MONTGOMERY M S,et al. Characteristics of electron velocity distribution functions in the solar wind derived from the helios plasma experiment[J]. Journal of Geophysical Research,1987,92(A2):1075-1092. doi:  10.1029/JA092iA02p01075
    [12] PIERRARD V,MAKSIMOVIC M,LEMAIRE J. Core,Halo and Strahl electrons in the solar wind[J]. Astrophysics and Space Science,2001,277:195-200.
    [13] MAKSIMOVIC M,ZOUGANELIS I,CHAUFRAY J Y,et al. Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU[J]. Journal of Geophysical Research,2005,110(A9):1-9.
    [14] TAO J W,WANG L H,ZONG Q G,et al. Quiet-time suprathermal(~0.1–1.5 kev)electrons in the solar wind[J]. The Astrophysical Journal,2016,820(1):1-10. doi:  10.3847/0004-637X/820/1/1
    [15] STVERAK S,MAKSIMOVIC M,TRAVNICEK P M,et al. Radial evolution of nonthermal electron populations in the low-latitude solar wind:helios,cluster,and Ulysses observations[J]. Journal of Geophysical Research:Space Physics,2009,114(A5):1-15.
    [16] FELDMAN W C,ASBRIDGE J R,BAME S J,et al. Upper limits for the solar wind He+ content at 1 AU[J]. Journal of Geophysical Research,1974,79(13):1808-1812. doi:  10.1029/JA079i013p01808
    [17] MAKSIMOVIC M, BALE S D, VAIVADS A, et al. A radio and plasma wave experiment for the solar orbiter mission[C]//Second Solar Orbiter Workshop. Athens, Greece: ESA, 2007.
    [18] SCUDDER J D,OLBERT S. A theory of local and global processes which affect solar wind electrons 2. experimental support[J]. Journal of Geophysical Research,1979,84(A11):6603-6620. doi:  10.1029/JA084iA11p06603
    [19] MAKSIMOVIC M,PIERRARD V,RILEY P. Ulysses electron distributions fitted with Kappa functions[J]. Geophysical Research Letters,1997,24(9):1151-1154. doi:  10.1029/97GL00992
    [20] PIERRARD V,MAKSIMOVIC M,LEMAIRE J. Electron velocity distribution functions from the solar wind to the corona[J]. Journal of Geophysical Research,1999,104(A8):17021-17032. doi:  10.1029/1999JA900169
    [21] YOON P H,RHEE T,RYU C M. Self-consistent formation of electron κ distribution:1. Theory[J]. Journal of Geophysical Research:Space Physics,2006,111(A9):1-10.
    [22] WANG L H,LIU G,HE J S,et al. Solar wind ~20–200 keV superhalo electrons at quiet times[J]. The Astrophysical Journal Letters,2015,803(1):1-6. doi:  10.1088/0004-637X/803/1/1
    [23] YANG L,WANG L H,LI G,et al. The angular distribution of solar wind superhalo electrons at quiet times[J]. The Astrophysical Journal Letters,2015,811(1):1-6. doi:  10.1088/0004-637X/811/1/1
    [24] PARKER E N. Nanoflares and the Solar X-Ray Corona[J]. The Astrophysical Journal,1988,330:474-479. doi:  10.1086/166485
    [25] YANG L P,WANG L H,HE J S,et al. Numerical simulation of superhalo electrons generated by magnetic reconnection in the solar wind source region[J]. Research in Astronomy and Astrophysics,2015,15(3):348-362. doi:  10.1088/1674-4527/15/3/005
    [26] YOON P H,ZIEBELL L F,GAELZER R,et al. Langmuir turbulence and suprathermal electrons[J]. Space Science Reviews,2012,173:459-489. doi:  10.1007/s11214-012-9867-3
    [27] ZANK G P,HUNANA P,MOSTAFAVI P,et al. Diffusive shock acceleration and reconnection acceleration processes[J]. The Astrophysical Journal,2015,814(2):137-160. doi:  10.1088/0004-637X/814/2/137
    [28] ZANK G P. Pickup ion-mediated plasma physics of the outer heliosphere and very local interstellar medium[J]. Geoscience Letters,2016,3(22):1-17.
    [29] MEWALDT R A, MASON G M, GLOECKLER G, et al. Long-term fluences of energetic particles in the heliosphere[C]//Proceedings of the 27th International Cosmic Ray Conference. Hamburg, Germany: The Auspices of the International Union of Pure and Applied Physics(IUPAP), 2001.
    [30] MASON G M, DESAI M I, MAZUR J E, et al. Energetic particles accelerated by shocks in the heliosphere: what is the source material?[C]//The Physics of Collisionless Shocks: 4th Annual IGPP International Astrophysics Conference. [S. l.]: IGPP, 2005.
    [31] GLOECKLER G, FISK L. Acceleration of low‐energy ions in the quiet‐time solar wind and at the termination shock[J]. AIP Conference Proceedings. [S. l.]: American Institute of Physics, 2006.
    [32] GLOECKLER G, FISK L A, MASON G M, et al. Formation of power law tail with spectral index-5 inside and beyond the heliosphere[C]//AIP Conference Proceedings. [S. l.]: American Institute of Physics, 2008.
    [33] FISK L A,GLOECKLER G. Particle acceleration in the heliosphere:implications for astrophysics[J]. Space Science Reviews,2012,173:433-458. doi:  10.1007/s11214-012-9899-8
    [34] MASON G M,GLOECKLER G. Power law distributions of suprathermal ions in the quiet solar wind[J]. Space Science Reviews,2012,172:241-251. doi:  10.1007/s11214-010-9741-0
    [35] GIACALONE J. Energetic charged particles associated with strong interplanetary shocks[J]. Astrophysical Journal,2012,761(1):28-40. doi:  10.1088/0004-637X/761/1/28
    [36] DAYEH M A,DESAI M I,DWYER J R,et al. Composition and spectral properties of the 1 AU quiet-time suprathermal ion population during solar cycle 23[J]. Astrophysical Journal,2009,693:1588-1600. doi:  10.1088/0004-637X/693/2/1588
    [37] FISK L A,GLOECKLER G. Acceleration of suprathermal tails in the solar wind[J]. Astrophysical Journal,2008,686:1466-1473. doi:  10.1086/591543
    [38] ZHANG M. Acceleration of suprathermal particles by compressional plasma wave trains in the solar wind[J]. Journal of Geophysical Research Space Physics,2010,115(A12):1-12.
    [39] DRAKE J F,SWISDAK M,FERMO R. The power-law spectra of energetic particles during multi-island magnetic reconnection[J]. Astrophysical Journal,2012,763(1):1-13.
    [40] ZANK G P,LE ROUX J A,WEBB G M,et al. Particle acceleration via reconnection processes in the supersonic solar wind[J]. Astrophysical Journal,2014,797(1):1-18. doi:  10.1088/0004-637X/797/1/1
    [41] LIVADIOTIS G,MCCOMAS D J. Beyond kappa distributions: exploiting Tsallis statistical mechanics in space plasmas[J]. Journal of Geophysical Research Space Physics,2009,114(A11):1-21.
    [42] JOKIPⅡ J R,LEE M A. Compression acceleration in astrophysical plasmas and the production of f(v)~ v-5 spectra in the heliosphere[J]. Astrophysical Journal,2010,713(1):475-483. doi:  10.1088/0004-637X/713/1/475
    [43] SCHWADRON N A,DAYEH M A,DESAI M I,et al. Superposition of stochastic processes and the resulting particle distributions[J]. Astrophysical Journal,2010,713(2):1386-1392. doi:  10.1088/0004-637X/713/2/1386
    [44] Decker R B,KRIMIGIS S M,ROELOF E C,et al. Voyager 1 in the foreshock,termination shock,and heliosheath[J]. Science,2005,309(5743):2020-2024. doi:  10.1126/science.1117569
    [45] RICHARDSON J D. Weak termination shock decelerates upstream solar wind but heliosheath plasma is cool[J]. Nature,2008,454:63-66. doi:  10.1038/nature07024
    [46] GRUNTMAN M,ROELOF E C,MITCHELL D G,et al. Energetic neutral atom imaging of the heliospheric boundary region[J]. Journal of Geophysical Research,2001,106(A8):15767-15781. doi:  10.1029/2000JA000328
    [47] MCCOMAS D J,FUSELIER S A,SCHWADRON N A. Local interstellar medium:six years of direct sampling by IBEX[J]. The Astrophysical Journal Supplement Sereries,2015,220(2):1-11.
    [48] KRIMIGIS S M,MITCHELL D G,ROELOF E C,et al. Imaging the interaction of the heliosphere with theinterstellar medium from Saturn with Cassini[J]. Science,2009,326(5955):971-973. doi:  10.1126/science.1181079
    [49] GLASER D L, HALEKAS J S, TURIN P, et al. STEIN(SupraThermal Electrons, Ions and Neutrals), a new particle detection instrument for space weather research with cubesats[C]//23rd Annual AIAA/USU Conference on Small Satellites. [S.l.]: AIAA, 2009.
  • [1] 谭宝林, 谭程明, 黄静, 陈林杰.  空间甚低频太阳射电Ⅲ型爆研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20190227002
    [2] 高冠男, 汪敏, 董亮, 郭少杰.  空间甚低频太阳II型射电暴研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20190222001
    [3] 乔学荣, 郭际, 米娟.  高比能量锂氟化碳电池在深空探测器上的应用试验研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191223001
    [4] 陈林杰, 颜毅华, 谭宝林.  基于空间矢量天线的太阳低频射电爆发探测研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20190411002
    [5] 钟武烨, 赵守智, 郑剑平, 吕征, 解家春.  空间热离子能量转换技术发展综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20200114001
    [6] 陈上上, 关轶峰, 于萍, 李骥, 张晓文.  基于粒子群优化的月球陨石坑探测轨迹规划 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191031007
    [7] 曹知远, 李翔宇, 乔栋.  面向太阳系边际探测的多天体借力目标选择方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200068
    [8] 张爱兵, 李晖, 孔令高, 张珅毅, 付利平, 薛洪波, 杨建峰, 何志平, 王玲华, 李延伟.  太阳系边际探测任务的科学载荷配置研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200060
    [9] 王赤, 李晖, 郭孝城, 徐欣峰.  太阳系边际探测项目的科学问题 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200058
    [10] 孔令高, 张爱兵, 田峥, 郑香脂, 王文静, 刘勇, 丁建京.  自主火星探测高集成离子与中性粒子分析仪 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.005
    [11] 逯运通, 张正峰, 傅子敬, 张旭辉.  一种深空粒子采样返回探测器构型设想 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.014
    [12] 敖先志, 刘四清, 沈华, 王晶晶, 胡骏翔, 李刚.  2 AU以内的“渐进型”太阳高能粒子事件模拟 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.007
    [13] 王馨悦, 张爱兵, 荆涛, 孔令高, 张珅毅.  近月空间带电粒子环境——“嫦娥1号”“嫦娥2号”观测结果 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.002
    [14] 侯东辉, 张珅毅, RobertFWimmer-Schweingruber, 于佳, SoenkeBurmeister, 沈国红, 袁斌, 王春琴, 张斌全.  月球粒子辐射环境探测现状 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.003
    [15] 杨涛, 邵志杰, 蔡明辉, 贾鑫禹, 韩建伟.  空间高能粒子与器件布线层核反应后次级粒子LET分布研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.009
    [16] 韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛.  脉冲激光模拟空间载荷单粒子效应研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.12.012
    [17] 邬静云, 高有涛.  利用绳系太阳帆减缓小行星自转的技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.007
    [18] 汪梁, 赵方方, 陈翠桥, 徐照钱.  粒子过滤在自主天文导航系统中的性能评估和应用 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.03.008
    [19] 贺晶, 龚胜平, 李俊峰.  利用逃逸能量的太阳帆最快交会轨迹优化 . 深空探测学报(中英文),
    [20] 郑永春, 欧阳自远.  太阳系探测的发展趋势与科学问题分析 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2020-09-29
  • 网络出版日期:  2021-01-18

太阳系边际的能量粒子探测

doi: 10.15982/j.issn.2096-9287.2020.20200061
    基金项目:  国家自然科学基金资助项目(41774183,41861134033,41421003);民用航天“十三五”技术预先研究日球层边际探测重要科学问题资助项目(D020301)
    作者简介:

    王玲华(1977– ),女,教授,博士生导师,主要研究方向:日球层能量粒子、空间能量粒子探测器。通讯地址:北京大学物理大楼北楼416室(100871)电话:(010)62767193 E-mail:wanglhwang@pku.edu.cn

  • ● Observations,theories and unsolved problems about solar wind suprathermal particles are systematically illustrated. ● The crucial role of superthermal particles in modulating the outer heliosphere and its boundaries is summarized. ● A new-generation energetic particle instrument is proposed to provide high-resolution measurements of energetic particles in the outer heliosphere and its boundaries.
  • 中图分类号: P35

摘要: 太阳系能量粒子的起源、加速及传播一直是物理学和空间物理学的重要前沿课题。太阳系边际探测将为研究这一前沿课题提供至关重要的信息。在太阳系边际区域,源自太阳系的能量粒子主要分为两类:太阳风超热粒子和能量中性原子(Energetic Neutral Atoms,ENA)。这些能量粒子对太阳系边际的形态和动力学过程会有很强的调制作用。但是,现在仍然缺乏对太阳风超热粒子的高精度就位探测和对太阳系边际的高精度ENA成像这些关键观测手段。基于STEREO卫星上的STE仪器对太阳风超热粒子的高精度探测和对地球磁层的高精度ENA探测,建议采用低能量阈值的新一代半导体探测器,结合已成熟的调制狭缝成像系统,以实现对太阳系边际(和顺访行星的磁层)的高精度ENA成像和对太阳风超热粒子的高精度就位探测。这些高精度观测将会为认识太阳系与星际介质之间相互作用的动力学演化和太阳系能量粒子的起源、加速及传播这些前沿课题提供关键信息。

注释:
1)  ● Observations,theories and unsolved problems about solar wind suprathermal particles are systematically illustrated. ● The crucial role of superthermal particles in modulating the outer heliosphere and its boundaries is summarized. ● A new-generation energetic particle instrument is proposed to provide high-resolution measurements of energetic particles in the outer heliosphere and its boundaries.

English Abstract

王玲华, 宗秋刚, 任杰. 太阳系边际的能量粒子探测[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200061
引用本文: 王玲华, 宗秋刚, 任杰. 太阳系边际的能量粒子探测[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200061
WANG Linghua, ZONG Qiugang, REN Jie. Detection of Energetic Particles in the Outer Heliosphere and its Boundaries[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200061
Citation: WANG Linghua, ZONG Qiugang, REN Jie. Detection of Energetic Particles in the Outer Heliosphere and its Boundaries[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200061
参考文献 (49)

返回顶部

目录

    /

    返回文章
    返回