中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外日球层激波事件的一维磁流体力学数值模拟

郭孝城 周昱成 王赤 李晖

郭孝城, 周昱成, 王赤, 李晖. 外日球层激波事件的一维磁流体力学数值模拟[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200059
引用本文: 郭孝城, 周昱成, 王赤, 李晖. 外日球层激波事件的一维磁流体力学数值模拟[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200059
GUO Xiaocheng, ZHOU Yucheng, WANG Chi, LI Hui. One-Dimentional Numerical MHD Simulation of the Shock Events in the Outer Heliosphere[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200059
Citation: GUO Xiaocheng, ZHOU Yucheng, WANG Chi, LI Hui. One-Dimentional Numerical MHD Simulation of the Shock Events in the Outer Heliosphere[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200059

外日球层激波事件的一维磁流体力学数值模拟

doi: 10.15982/j.issn.2096-9287.2020.20200059
基金项目: 中国科学院空间科学战略先导科技专项资助项目(XDB41000000,XDA15052500);国家自然科学基金资助项目(41874171,41674146,41574159,41731070);中国科学院前沿科学重点研究计划资助项目(QYZDJ-SSW-JSC028);民用航天技术预先研究资助项目(D030202,D020301)
详细信息
    作者简介:

    郭孝城(1978– ),男,研究员,主要研究方向:日球层物理、磁层物理。 通讯地址:北京市海淀区中关村南二条1号中国科学院国家空间科学中心(100190)电话:(010)62586362 E-mail:xcguo@swl.ac.cn

  • ● It is the first time to use the solar wind data from OMNI,the spacecraft STEREO A and B orbiting the Sun conjunctly to study the evolution and propagation of the solar wind in the outer heliosphere. ● The numerical simulations have been carried out to verify the possible correspondence between the large-scale pressure pulse structure in the heliosphere and the shock event in interstellar space.
  • 中图分类号: V467.3

One-Dimentional Numerical MHD Simulation of the Shock Events in the Outer Heliosphere

  • 摘要: “旅行者1号”在2012年8月穿越日球层顶后连续探测到了星际磁场的局地突然变化,通常被认为对应于激波事件,且为太阳风事件向外传播后形成的大尺度结构与日球层顶相互作用的产物。但由于观测的限制,日球层内的太阳风大尺度结构与星际空间的激波事件的对应关系尚未明确。通过一个包含太阳风等离子体和星际中性原子的双流体磁流体力学数值模型检验了这种对应关系。在距日1 AU的内边界输入2010—2017年分别位于不同经度上的OMNI,STEREO A和STEREO B的太阳风观测数据,研究了这期间太阳风与星际中性原子电荷交换后在外日球层区的传播和演化,并与“旅行者1号”和“旅行者2号”的观测数据做对比。结果表明,“旅行者1号”探测的星际空间激波事件与“旅行者2号”探测到的日球层鞘区内的压力脉冲事件具有明显的关联。
    Highlights
    ● It is the first time to use the solar wind data from OMNI,the spacecraft STEREO A and B orbiting the Sun conjunctly to study the evolution and propagation of the solar wind in the outer heliosphere. ● The numerical simulations have been carried out to verify the possible correspondence between the large-scale pressure pulse structure in the heliosphere and the shock event in interstellar space.
  • 图  1  沿着径向方向的太阳风参数

    Fig.  1  The profiles of solar wind plasma along radial direction

    图  2  2011—2017年采用3种不同内边界数据源的太阳风动压对比

    Fig.  2  The comparision of solar wind dynamical pressure between the observation(red)and the simulations(blue)during the years 2011—2017

    图  3  2012—2016年用三种不同内边界数据源,模拟得到的“旅行者1号”可能探测的动压数据

    Fig.  3  The simulated dynamical pressures that could be encountered by Voyager 1 during the years 2012—2016

  • [1] PARKER E N. The stellar wind regions[J]. The Astrophysical Journal,1961,134:20-27. doi:  10.1086/147124
    [2] BURLAGA L F,NESS N F,ACUÑA M H,et al. Magnetic fields at the solar wind termination shock[J]. Nature,2008,454(7200):75-77. doi:  10.1038/nature07029
    [3] KRIMIGIS S M,DECKER R B,ROELOF E C,et al. Search for the exit:Voyager 1 at heliosphere’s border with the galaxy[J]. Science,2013,341(6242):144-147.
    [4] SARABHAI V. Some consequences of nonuniformity of solar wind velocity[J]. Journal of Geophysical Research,1963,68(5):1555-1557. doi:  10.1029/JZ068i005p01555
    [5] GOPALSWAMY N. Properties of interplanetary coronal mass ejections[J]. Space Science Reviews,2006,124:145-168.
    [6] WHANG Y C,BURLAGA L F. Evolution and interaction of interplanetary shocks[J]. Journal of Geophysical Research,1985,90(A11):10765-10778. doi:  10.1029/JA090iA11p10765
    [7] BURLAGA L F,NESS N F,BELCHER J W. Radial evolution of corotating merged interaction regions and flows between ~14 AU and ~43 AU[J]. Journal of Geophysical Research Space Physics,1997,102(A3):4661-4672. doi:  10.1029/96JA03629
    [8] WANG C,RICHARDSON J D. Development of a strong shock in the outer heliosphere[J]. Geophysical Research Letters,2002,29(8):1181-1188. doi:  10.1029/2001GL014250
    [9] BURLAGA L F,NESS N F. Observations of the interstellar magnetic field in the outer heliosheath:Voyager 1[J]. The Astrophysical Journal,2016,829(2):1-10.
    [10] GURNETT D A,KURTH W S,STONE E C,et al. Precursors to interstellar shocks of solar origin[J]. The Astrophysical Journal,2015,809(2):1-10.
    [11] LIU Y D,RICHARDSON J D,WANG C,et al. Propagation of the 2012 march coronal mass ejections from the Sun to heliopause[J]. The Astrophysical Journal Letters,2014,788(2):1-6.
    [12] FERMO R L, POGORELOV N V, BURLAGA L F. Transient shocks beyond the heliopause[C]//14th Annual International Astrophysics Conference: Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond. Tampa, Florida, USA: IOP, 2015.
    [13] KIM T K,POGORELOV N V,BURLAGA L F. Modelling shocks detected by Voyager 1 in the local interstellar medium[J]. The Astrophysical Journal Letters,2017,843(2):1-7.
    [14] POGORELOV N V,SUESS S T,BOROVIKOV S N,et al. Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. IV. Solar cycle model based on Ulysses observations[J]. The Astrophysical Journal,2013,772(2):1-17.
    [15] RICHARDSON J D,WANG C,LIU Y D,et al. Pressure pulses at Voyager 2:drivers of interstellar transients?[J]. The Astrophysical Journal,2017,834(2):1-6.
    [16] PAULS H L,ZANK G P,WILLIAMS L L. Interaction of the solar wind with the local interstellar medium[J]. Journal of Geophysical Research,1995,100(A11):21595-21604. doi:  10.1029/95JA02023
    [17] GUO X C,FLORINSKI V,WANG C. A global MHD simulation of outer heliosphere including anomalous cosmic-rays[J]. The Astrophysical Journal,2019,879(2):1-10.
    [18] FLORINSKI V,GUO X,BALSARA D S,et al. Magnetohydrodynamic modeling of solar system processes on geodesic grids[J]. The Astrophysical Journal Supplement Serisa,2013,205(2):1-12.
    [19] GUO X C. An extended HLLC Riemann solver for the magneto-hydrodynamics including strong internal magnetic field[J]. Journal of Computional Physics,2015,290:352-363. doi:  10.1016/j.jcp.2015.02.048
    [20] AXFORD W 1. The interaction of the solar wind with the interstellar medium[C]//In Solar Wind: Proceedings of the Second International Conference. [S.l.]: NASA, 1972.
    [21] WANG C,RICHARDSON J D. Energy partition between solar wind protons and pickup ions in the distant heliosphere:a three-fluid approach[J]. Journal of Geophysical Research,2001,106(A12):29401-29408. doi:  10.1029/2001JA000190
    [22] GUO X C,FLORINSKI V. Galactic cosmic-ray intensity modulation by corotating interaction region stream interfaces at 1 AU[J]. The Astrophysical Journal,2016,826(1):1-13. doi:  10.3847/0004-637X/826/1/1
    [23] RICHARDSON J D,BELCHER J W,GARCIA-GALINDO P,et al. Voyager 2 plasma observations of the heliopause and interstellar medium[J]. Nature,2019(3):1019-1023.
    [24] GURNETT D A,KURTH W S. Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments[J]. Nature Astronomy,2019,3(11):1024-1028. doi:  10.1038/s41550-019-0918-5
    [25] BALE S D,REINER M J,BOUGERET J L,et al. The source region of an interplanetary type II radio burst[J]. Geophysical Research Letters,1999,26(11):1573-1576. doi:  10.1029/1999GL900293
    [26] GAZIS P R. Solar wind stream structure at large heliocentric distances:pioneer observations[J]. Journal of Geophysical Research,1987,92(A3):2231-2242. doi:  10.1029/JA092iA03p02231
    [27] SZABO A, SMITH C W, SKOUG R M. The transition of interplanetary shocks through the magnetosheath[C]//AIP Conference Proceedings. Melville, NY: AIP, 2003.
    [28] JIAN L K,RUSSELL C,LUHMANN J G,et al. STEREO observations of interplanetary coronal mass ejections in 2007–2016[J]. The Astrophysical Journal,2018,855(2):1-19.
    [29] STONE E C,CUMMINGS A C,MCDONALD F B,et al. Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions[J]. Science,2013,341(6142):150-153. doi:  10.1126/science.1236408
    [30] CUMMINGS A C,STONE E C,HEIKKILA B C,et al. Galactic cosmic rays in the local interstellar medium:Voyager 1 observations and model results[J]. The Astrophysical Journal,2016,831(1):1-21. doi:  10.3847/0004-637X/831/1/1
    [31] BURLAGA L F,NESS N F. Observations of the interstellar magnetic field in the outer heliosheath:Voyager 1[J]. The Astrophysical Journal,2013,829(2):1-10.
  • [1] 谭宝林, 谭程明, 黄静, 陈林杰.  空间甚低频太阳射电Ⅲ型爆研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20190227002
    [2] 王玲华, 宗秋刚, 任杰.  太阳系边际的能量粒子探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200061
    [3] 辛鹏飞, 吴跃民, 荣吉利, 危清清, 刘宾, 刘鑫.  月面探测器圆形薄膜太阳翼展开动力学建模与分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191128005
    [4] 何建森, 林荣, 崔博, 王玲华, 宗秋刚.  外日球层的宽能段离子及其与湍动的耦合作用 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200064
    [5] 宗秋刚, 任杰, 何建森, 王玲华.  从地球磁层到外日球层及以远区域探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200063
    [6] 宁晓琳, 晁雯.  一种基于太阳自转轴观测角的新型天文导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.003
    [7] 宁晓琳, 桂明臻, 孙晓函, 刘劲, 吴伟仁.  一种基于太阳震荡时间延迟量测的自主天文导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.013
    [8] 杨涛, 邵志杰, 蔡明辉, 贾鑫禹, 韩建伟.  空间高能粒子与器件布线层核反应后次级粒子LET分布研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.009
    [9] 敖先志, 刘四清, 沈华, 王晶晶, 胡骏翔, 李刚.  2 AU以内的“渐进型”太阳高能粒子事件模拟 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.007
    [10] 杨轩, 鄢建国, 叶茂, 金炜桐, 曲春凯, 刘素艳.  对一种月球与火星探测多程微波测量链路定轨定位的数值模拟初步分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.02.007
    [11] 黄护林, 李林永, 李来, 刘飞标.  等离子体磁流体发电研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.04.003
    [12] 高珊, 周文艳, 梁伟光, 刘德成, 唐玉华, 杨维廉.  地月拉格朗日L2点中继星轨道分析与设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.004
    [13] 何芸, 刘祺, 田伟, 段会宗, 叶贤基, 范淑华, 李语强.  地月第二拉格朗日点卫星激光测距技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.005
    [14] 赖小明, 白书欣, 赵曾, 庞勇, 殷参.  模拟月面环境钻进过程热特性研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.011
    [15] 胡海岩.  太阳帆航天器的关键技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.005
    [16] 葛丹桐, 崔平远.  地外天体着陆点选择综述与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.03.001
    [17] 姜生元, 朴松杰, 张伟伟, 沈毅, 侯绪研, 全齐全, 邓宗全.  地外天体潜入式探测典型案例分析及展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.011
    [18] 曾祥远, 龚胜平, 李俊峰, 蒋方华, 宝音贺西.  应用太阳帆悬停探测哑铃形小行星 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.007
    [19] 平劲松.  月球动力学专辑 . 深空探测学报(中英文),
    [20] 倪彦硕, 宝音贺西, 李俊峰.  考虑太阳摄动的小行星附近轨道动力学 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-19
  • 修回日期:  2020-09-25
  • 网络出版日期:  2021-01-18

外日球层激波事件的一维磁流体力学数值模拟

doi: 10.15982/j.issn.2096-9287.2020.20200059
    基金项目:  中国科学院空间科学战略先导科技专项资助项目(XDB41000000,XDA15052500);国家自然科学基金资助项目(41874171,41674146,41574159,41731070);中国科学院前沿科学重点研究计划资助项目(QYZDJ-SSW-JSC028);民用航天技术预先研究资助项目(D030202,D020301)
    作者简介:

    郭孝城(1978– ),男,研究员,主要研究方向:日球层物理、磁层物理。 通讯地址:北京市海淀区中关村南二条1号中国科学院国家空间科学中心(100190)电话:(010)62586362 E-mail:xcguo@swl.ac.cn

  • ● It is the first time to use the solar wind data from OMNI,the spacecraft STEREO A and B orbiting the Sun conjunctly to study the evolution and propagation of the solar wind in the outer heliosphere. ● The numerical simulations have been carried out to verify the possible correspondence between the large-scale pressure pulse structure in the heliosphere and the shock event in interstellar space.
  • 中图分类号: V467.3

摘要: “旅行者1号”在2012年8月穿越日球层顶后连续探测到了星际磁场的局地突然变化,通常被认为对应于激波事件,且为太阳风事件向外传播后形成的大尺度结构与日球层顶相互作用的产物。但由于观测的限制,日球层内的太阳风大尺度结构与星际空间的激波事件的对应关系尚未明确。通过一个包含太阳风等离子体和星际中性原子的双流体磁流体力学数值模型检验了这种对应关系。在距日1 AU的内边界输入2010—2017年分别位于不同经度上的OMNI,STEREO A和STEREO B的太阳风观测数据,研究了这期间太阳风与星际中性原子电荷交换后在外日球层区的传播和演化,并与“旅行者1号”和“旅行者2号”的观测数据做对比。结果表明,“旅行者1号”探测的星际空间激波事件与“旅行者2号”探测到的日球层鞘区内的压力脉冲事件具有明显的关联。

注释:
1)  ● It is the first time to use the solar wind data from OMNI,the spacecraft STEREO A and B orbiting the Sun conjunctly to study the evolution and propagation of the solar wind in the outer heliosphere. ● The numerical simulations have been carried out to verify the possible correspondence between the large-scale pressure pulse structure in the heliosphere and the shock event in interstellar space.

English Abstract

郭孝城, 周昱成, 王赤, 李晖. 外日球层激波事件的一维磁流体力学数值模拟[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200059
引用本文: 郭孝城, 周昱成, 王赤, 李晖. 外日球层激波事件的一维磁流体力学数值模拟[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200059
GUO Xiaocheng, ZHOU Yucheng, WANG Chi, LI Hui. One-Dimentional Numerical MHD Simulation of the Shock Events in the Outer Heliosphere[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200059
Citation: GUO Xiaocheng, ZHOU Yucheng, WANG Chi, LI Hui. One-Dimentional Numerical MHD Simulation of the Shock Events in the Outer Heliosphere[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200059
参考文献 (31)

返回顶部

目录

    /

    返回文章
    返回