中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳系边际探测项目的科学问题

王赤 李晖 郭孝城 徐欣峰

王赤, 李晖, 郭孝城, 徐欣峰. 太阳系边际探测项目的科学问题[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200058
引用本文: 王赤, 李晖, 郭孝城, 徐欣峰. 太阳系边际探测项目的科学问题[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200058
WANG Chi, LI Hui, GUO Xiaocheng, XU Xinfeng. Scientific Objectives for the Exploration of the Boundary of Solar System[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200058
Citation: WANG Chi, LI Hui, GUO Xiaocheng, XU Xinfeng. Scientific Objectives for the Exploration of the Boundary of Solar System[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200058

太阳系边际探测项目的科学问题

doi: 10.15982/j.issn.2096-9287.2020.20200058
基金项目: 国家自然科学基金资助项目(41731070);中国科学院专项资助项目(XDA15052500,QYZDJ-SSW-JSC028);民用航天预先研究资助项目(D020301,D030202);国家重点实验室专项资助项目;民用航天技术预先研究项目(D030202,D020301)
详细信息
    作者简介:

    王赤(1967– ),男,中国科学院院士,研究员,主要研究方向:日球层物理、磁层物理。通讯地址:北京市海淀区中关村南二条1号中国科学院国家空间科学中心(100190)电话:(010)62582763 E-mail:cw@swl.ac.cn

  • ● By analyzing and sorting out the current international and domestic status of the mission for the edge of solar system. ● We look forward to the first Chinese mission for the edge of solar system in the future,and the related scientific issues.
  • 中图分类号: P353.7

Scientific Objectives for the Exploration of the Boundary of Solar System

  • 摘要: 太阳系边际是保护人类家园的太阳系最外层的篱笆。尽管在1977已发射的“旅行者1号”(Voyager 1)和“旅行者2号”(Voyager 2)近年来已陆续抵达太阳系边际,但由于所携带载荷性能的限制,仍然留下一些悬而未决的重大科学问题。因此,太阳系边际乃至更远的星际空间还有待更有效的就位探测,一个专门的太阳系边际探测计划蕴含着巨大的科学价值。介绍了太阳系边际的定义和主要探测要素,总结了国内外太阳系边际探测的现状,包括已实施和正在论证的太阳系边际探测任务的科学目标、科学载荷配置,梳理了未来太阳系边际探测过程中关于日球物理、星际空间物理和太阳系演化方面的一些重大科学问题,并对我国未来太阳系边际自主探测任务科学目标的制定进行了展望。
    Highlights
    ● By analyzing and sorting out the current international and domestic status of the mission for the edge of solar system. ● We look forward to the first Chinese mission for the edge of solar system in the future,and the related scientific issues.
  • 图  1  “旅行者2号”太阳风观测结果

    Fig.  1  Solar wind observations of Voyager 2

    图  2  “旅行者1号”在鞘区观测到异常宇宙线[20]

    Fig.  2  The gradual increase of anormalous cosmic rays observed by Voyager 1 in the heliosheath[20]

    图  3  “旅行者2号”终止激波特性

    Fig.  3  The characteristic of Voyager 2 termination shock

    图  4  日球层整体结构

    Fig.  4  The whole structure of heliosphere

    图  5  日球层外可能没有弓激波结构[24]

    Fig.  5  Bow shock may not exist outside of the heliosphere[24]

    图  6  外日球层间断面结构

    Fig.  6  Discontinuous surface structure of the outer heliosphere

    图  7  中性原子墙的形成机制及分布[25]

    Fig.  7  The formation mechanism and distribution of the hydrogen wall[25]

    图  8  IBEX观测到的1.1 keV能量中性原子的全天分布,图中可见明亮的飘带结构

    Fig.  8  The all-sky distribution of 1.1 keV energetic neutral atoms observed by IBEX showing the existence of a bright ribbon

    图  9  星际介质性质特性

    Fig.  9  Characteristics of the interstellar neutrals

    图  10  星际介质磁场特性[34]

    注:2000年观测数据

    Fig.  10  The profiles of interstellar magnetic field[34]

    图  11  日球层附近的星云

    Fig.  11  The variation of the directions of the interstellar wind

  • [1] KIVELSON M G, RUSSELL C T. Introduction to space physics[M]. Cambridge, UK: Cambridge University Press, 1995.
    [2] WANG C,BELCHER J W. Numerical investigation of hydrodynamic instabilities of the heliopause[J]. Journal of Geophysical Research,1998,103(A1):247-256. doi:  10.1029/97JA02773
    [3] IZMODENOV V V, KALLENBACH R. The physics of the heliospheric boundaries[R]. Switzerland: International Space Science Institute, 2015
    [4] HALL C F. Pioneer 10[J]. Science,1974,183(4122):301-302. doi:  10.1126/science.183.4122.301
    [5] SMITH E J,DAVIS L,JONES D E,et al. Jupiter’s magnetic field,magnetosphere,and interaction with the solar wind -Pioneer 11[J]. Science,1975,188(4187):451-455. doi:  10.1126/science.188.4187.451
    [6] DECKER R B,KRIMIGIS S M,ROELOF E C,et al. Voyager 1 in the foreshock,termination shock,and heliosheath[J]. Science,2005,309(5743):2020-2024. doi:  10.1126/science.1117569
    [7] STONE E C,CUMMINGS A C,MCDONALD F B,et al. Voyager 1 explores the termination shock region and the heliosheath beyond[J]. Science,2005,309(5743):2017-2020. doi:  10.1126/science.1117684
    [8] LI H,WANG C,RICHARDSON J D. Properties of the termination shock observed by Voyager 2[J]. Geophysical Research Letters,2008,35(19):1-4.
    [9] RICHARDSON J D,KASPER J C,WANG C,et al. Voyager 2 plasma observations near the termination shock[J]. Nature,2008,454(78):75-77.
    [10] RICHARDSON J D,BELCHER J W,GARCIA-GALINDO P,et al. Voyager 2 plasma observations of the heliopause and interstellar medium[J]. Nature Astronomy,2019(3):1019-1023.
    [11] FOUNTAIN G H,KUSNIERKIEWICZ D Y,HERSMAN C B,et al. The new horizons spacecraft[J]. Space Science Review,2008,140:23-47. doi:  10.1007/s11214-008-9374-8
    [12] MCCOMAS D J,ALLEGRINI F,BOCHSLER P,et al. Global observations of the interstellar interaction from the interstellar boundary explorer(IBEX)[J]. Science,2009,326(5955):959-962. doi:  10.1126/science.1180906
    [13] MCCOMAS D J,ZIRNSTEIN E J,BZOWSKI M,et al. Seven years of imaging the global heliosphere with IBEX[J]. The Astrophysical Journal Supplement Series,2017,229(41):1-32.
    [14] National Aeronautics and Space Administration. Our dynamic space environment: heliophysics science and technology roadmap for 2014—2033[EB/OL]. (2020-08-18)https://explorers.larc.nasa.gov/HPSMEX/MO/pdf files/2014 HelioRoadmap_Final Reduced 0.pdf.
    [15] WIMMER-SCHWEINGRUBER R F,MANUTT R,SCHWADRON N A,et al. Interstellar heliospheric probe/heliospheric boundary explorer mission-a mission to the outermost boundaries of the solar system[J]. Experimental Astronomy,2009(24):9-46.
    [16] MCNUTT L R,WIMMER-SCHWEINGRUBER R F,GRUNTMAN M A,et al. Near-term interstellar probe:first step[J]. Acta Astronautica,2019(162):284-299.
    [17] 吴伟仁,于登云,黄江川,等. 太阳系边际探测研究[J]. 中国科学:信息科学,2019,49(1):1-16. doi:  10.1360/N112018-00273

    WU W R,YU D Y,HUANG J C,et al. Exploring the solar system boundary[J]. Scientia Sinica Informationis,2019,49(1):1-16. doi:  10.1360/N112018-00273
    [18] WANG C,RICHARDSON J D. Determination of the solar wind slowdown near solar maximum[J]. Journal of Geophysical Research,2003,108(A2):1058.
    [19] WANG C,RICHARDSON J D. Energy partition between solar wind protons and pickup ions in the distant heliosphere:a three-fluid approach[J]. Journal of Geophysical Research:Space Physics,2001,106(A12):29401-29407. doi:  10.1029/2001JA000190
    [20] MCDONALD F B, WEBBER W R, STONE E C, et al. Voyager observations of galactic and anomalous cosmic rays in the helioshealth[C]//5th Annual International Astrophysics Conference: Physics of the Inner Heliosheath - Voyager Observations, Theory, and Future Prospects. Oahu, Hawaii, USA: AIP, 2006
    [21] RICHARDSON J D,KASPER J C,WANG C,et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock[J]. Nature,2008,454(7200):63-66. doi:  10.1038/nature07024
    [22] MCCOMAS D J,DAYEH M A,FUNSTEN H O,et al. The heliotail revealed by the interstellar boundary explorer[J]. The Astrophysical Journal,2013,771(2):1-9.
    [23] DIALYNAS K,KRIMIGIS S M,MITCHELL D G,et al. The bubble-like shape of the heliosphere observed by Voyager and Cassini[J]. Nature Astronomy,2017(1):0115.
    [24] MCCOMAS D J,ALEXASHOV D,BZOWSKI M,et al. The heliosphere’s interstellar interaction:no bow shock[J]. Science,2012,336(6086):1291-1293. doi:  10.1126/science.1221054
    [25] WANG C,BELCHER J W. The heliospheric boundary response to large-scale solar wind fluctuations:A gasdynamic model with pickup ions[J]. Journal of Geophysical Research,1999,104(A1):549-556. doi:  10.1029/1998JA900052
    [26] LIEWER P C,KARMESIN S R,BRACKBILL J U. Hydrodynamic instability of the heliopause driven by plasma-neutral charge-exchange interactions[J]. Journal of Geophysical Research,1996,101(A1):17119-17128.
    [27] BOROVIKOV S N,POGORELOV N V. VOYAGER 1 near the heliopause[J]. The Astrophysical Journal Letters,2014,783(1):1-6. doi:  10.1088/0004-637X/783/1/1
    [28] IZMODENOV V V,ALEXASHOV D B. Three-dimensional kinetic- MHD model of the global heliosphere with the heliopause-surface fitting[J]. Astrophysical Journal Supplement Series,2015,220(2):1-14.
    [29] BOROVIKOV S N,POGORELOV NV,ZANK G P,et al. ,Consequences of the heliopause instability caused by charge exchange[J]. The Astrophysical Journal,2008,682(2):1404-1415. doi:  10.1086/589634
    [30] DESAI M I,ALLEGRINI F A,BZOWSKI M,et al. Energetic neutral atoms measured by the interstellar boundary explorer(IBEX):evidence for multiple heliosheath populations[J]. The Astrophysical Journal,2013,780(1):1-11. doi:  10.1088/0004-637X/780/1/1
    [31] MCCOMAS D J,ALLEGRINI F,BOCHSLER P,et al. IBEX-interstellar boundary explorer[J]. Space Science Review,2009,146:11-33. doi:  10.1007/s11214-009-9499-4
    [32] HEERIKHUISEN J,POGORELOV N V,ZANK G P,et al. Pick-up ions in the outer heliosheath:a possible mechanism for the interstellar boundary explorer ribbon[J]. The Astrophysical Journal Letters,2010,708:L126-L130. doi:  10.1088/2041-8205/708/2/L126
    [33] FLORINSKI V,ZANK G P,HEERIKHUISEN J,et al. Stability of a pickup ion ring-beam population in the outer heliosheath:implications for the ibex ribbon[J]. The Astrophysical Journal,2010,719(2):1097-1103. doi:  10.1088/0004-637X/719/2/1097
    [34] BURLAGA L F, NESS N F. Voyager 1 observations of the interstellar magnetic field and the transition from the heliosheath[J]. The Astrophysical Journal,2014,784(2):1-14. doi:  10.1038/s41550-019-0920-y
    [35] FRISCH P C,BZOWSKI M,LIVADIOTIS G,et al. Decades-long changes of the interstellar wind through our solar system[J]. Science,2013,341(6150):1080-1082. doi:  10.1126/science.1239925
    [36] 邓雪梅,谢懿. 高精度相对论验证的现状与趋势:太阳系实验[J]. 天文学进展,2014,32(2):122-127.

    DENG X M,XIE Y. The status and trends of testing relativity in highly accurate level:tests in the solar system[J]. Progress in Astronomy,2014,32(2):122-127.
  • [1] 谭宝林, 谭程明, 黄静, 陈林杰.  空间甚低频太阳射电Ⅲ型爆研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20190227002
    [2] 陈林杰, 颜毅华, 谭宝林.  基于空间矢量天线的太阳低频射电爆发探测研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20190411002
    [3] 高冠男, 汪敏, 董亮, 郭少杰.  空间甚低频太阳II型射电暴研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20190222001
    [4] 何建森, 林荣, 崔博, 王玲华, 宗秋刚.  外日球层的宽能段离子及其与湍动的耦合作用 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200064
    [5] 郭孝城, 周昱成, 王赤, 李晖.  外日球层激波事件的一维磁流体力学数值模拟 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200059
    [6] 曹知远, 李翔宇, 乔栋.  面向太阳系边际探测的多天体借力目标选择方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200068
    [7] 张爱兵, 李晖, 孔令高, 张珅毅, 付利平, 薛洪波, 杨建峰, 何志平, 王玲华, 李延伟.  太阳系边际探测任务的科学载荷配置研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200060
    [8] 王玲华, 宗秋刚, 任杰.  太阳系边际的能量粒子探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200061
    [9] 宗秋刚, 任杰, 何建森, 王玲华.  从地球磁层到外日球层及以远区域探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200063
    [10] 宁晓琳, 晁雯.  一种基于太阳自转轴观测角的新型天文导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.003
    [11] 宁晓琳, 桂明臻, 孙晓函, 刘劲, 吴伟仁.  一种基于太阳震荡时间延迟量测的自主天文导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.013
    [12] 杨涛, 邵志杰, 蔡明辉, 贾鑫禹, 韩建伟.  空间高能粒子与器件布线层核反应后次级粒子LET分布研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.009
    [13] 梁伟光, 周文艳, 周建亮, 杨维廉.  地月系L2平动点轨道长期维持过程研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.010
    [14] 张建琴, 徐建明, 贾巍, 邱宝贵, 肖杰.  深空探测太阳电池阵应用及关键技术分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.001
    [15] 胡海岩.  太阳帆航天器的关键技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.005
    [16] 倪彦硕, 施伟璜, 杨洪伟, 宝音贺西, 李俊峰.  利用Breakwell间距比法制定行星际探测中途修正策略 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.013
    [17] 邬静云, 高有涛.  利用绳系太阳帆减缓小行星自转的技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.007
    [18] 曾祥远, 龚胜平, 李俊峰, 蒋方华, 宝音贺西.  应用太阳帆悬停探测哑铃形小行星 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.007
    [19] 倪彦硕, 宝音贺西, 李俊峰.  考虑太阳摄动的小行星附近轨道动力学 . 深空探测学报(中英文),
    [20] 郑永春, 欧阳自远.  太阳系探测的发展趋势与科学问题分析 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-09-25
  • 网络出版日期:  2021-01-18

太阳系边际探测项目的科学问题

doi: 10.15982/j.issn.2096-9287.2020.20200058
    基金项目:  国家自然科学基金资助项目(41731070);中国科学院专项资助项目(XDA15052500,QYZDJ-SSW-JSC028);民用航天预先研究资助项目(D020301,D030202);国家重点实验室专项资助项目;民用航天技术预先研究项目(D030202,D020301)
    作者简介:

    王赤(1967– ),男,中国科学院院士,研究员,主要研究方向:日球层物理、磁层物理。通讯地址:北京市海淀区中关村南二条1号中国科学院国家空间科学中心(100190)电话:(010)62582763 E-mail:cw@swl.ac.cn

  • ● By analyzing and sorting out the current international and domestic status of the mission for the edge of solar system. ● We look forward to the first Chinese mission for the edge of solar system in the future,and the related scientific issues.
  • 中图分类号: P353.7

摘要: 太阳系边际是保护人类家园的太阳系最外层的篱笆。尽管在1977已发射的“旅行者1号”(Voyager 1)和“旅行者2号”(Voyager 2)近年来已陆续抵达太阳系边际,但由于所携带载荷性能的限制,仍然留下一些悬而未决的重大科学问题。因此,太阳系边际乃至更远的星际空间还有待更有效的就位探测,一个专门的太阳系边际探测计划蕴含着巨大的科学价值。介绍了太阳系边际的定义和主要探测要素,总结了国内外太阳系边际探测的现状,包括已实施和正在论证的太阳系边际探测任务的科学目标、科学载荷配置,梳理了未来太阳系边际探测过程中关于日球物理、星际空间物理和太阳系演化方面的一些重大科学问题,并对我国未来太阳系边际自主探测任务科学目标的制定进行了展望。

注释:
1)  ● By analyzing and sorting out the current international and domestic status of the mission for the edge of solar system. ● We look forward to the first Chinese mission for the edge of solar system in the future,and the related scientific issues.

English Abstract

王赤, 李晖, 郭孝城, 徐欣峰. 太阳系边际探测项目的科学问题[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200058
引用本文: 王赤, 李晖, 郭孝城, 徐欣峰. 太阳系边际探测项目的科学问题[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200058
WANG Chi, LI Hui, GUO Xiaocheng, XU Xinfeng. Scientific Objectives for the Exploration of the Boundary of Solar System[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200058
Citation: WANG Chi, LI Hui, GUO Xiaocheng, XU Xinfeng. Scientific Objectives for the Exploration of the Boundary of Solar System[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200058
参考文献 (36)

返回顶部

目录

    /

    返回文章
    返回