中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The Exploration of Neptune:A Noble Gas and Volatile Perspective

SMITH Thomas HE  Huaiyu LIU Ranran

SMITHThomas, 贺怀宇, 刘冉冉. 海王星探测:稀有气体和挥发分分析[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200057
引用本文: SMITHThomas, 贺怀宇, 刘冉冉. 海王星探测:稀有气体和挥发分分析[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200057
Reference format: SMITH T,HE H Y,LIU R R. The exploration of Neptune:a noble gas and volatile perspective[J]. Journal of Deep Space Exploration,2020,7 (6) : 584-604 doi:  10.15982/j.issn.2096-9287.2020.20200057
Citation: Reference format: SMITH T,HE H Y,LIU R R. The exploration of Neptune:a noble gas and volatile perspective[J]. Journal of Deep Space Exploration,2020,7 (6) : 584-604 doi:  10.15982/j.issn.2096-9287.2020.20200057

海王星探测:稀有气体和挥发分分析

doi: 10.15982/j.issn.2096-9287.2020.20200057
详细信息
  • 中图分类号: P356

The Exploration of Neptune:A Noble Gas and Volatile Perspective

  • 摘要: 地外天体的探测目标主要是太阳系中离地球较近的行星和天体,例如水星、金星、月球、火星、木星、小行星67P和近地小行星25143糸川。目前,人类还没有明确提出对太阳系中两大冰巨行星天王星和海王星的探测计划。人类探测仍停留在“旅行者2号”探测器分别于1986年1月和1989年8月飞掠天王星和海王星时传回的数据。在过去的几十年间,越来越多类属冰巨行星的系外行星被发现,而且冰巨行星比类似木星和土星的气态巨行星数量更多,加深对冰巨行星的了解势在必行。其中,行星大气组成,特别是稀有气体和挥发分的分布尤为重要。详细回顾了对太阳系中各天体挥发分的探测及结果;总结了天王星和海王星的稀有气体和挥发分的浓度、分布和演化过程;讨论了探索冰巨行星的星际探测任务的流程、可行性以及探测器载荷选择。提出了利用离子阱质谱仪作为中国外太阳系探测任务中探索冰巨行星科学载荷的可行性。
  • 图  1  The internal structure of Uranus and Neptune,subdivided into a three-layer model:a hydrogen-helium envelope,ices,and a solid core(magnesium-silicate and iron),adapted and modified after the figure 12 of Guillot and Gautier[58]

    Fig.  2  Elemental abundance ratios in the atmospheres of Jupiter,Saturn,Uranus,and Neptune relative to the solar abundances,such as(X/H)observed/(X/H)Solar,where X stands for the element of interest. A solar abundance is assumed with a ratio of 1,supersolar values are indicated with ratios > 1. The color domains represent the possible range of enhancements at the considered giant planets. This figure is adapted and modified after Mousis et al.[11]

    Fig.  3  The different scenarios to explain the enrichments of volatiles at the ice giants,figure adapted and modified after Mousis et al.[11]

    Fig.  4  Structure of the cloud layers in the ice giants based on Equilibrium Cloud Condensation Models(ECCM),based on Weidenschilling and Lewis[83]. The assumptions are the following:a temperature of 76 K at a pressure of 1 bar,an enrichment in C of 45 times the Solar value(Voyager data[84]),and O,N,and S are considered to be equal to Solar value. This figure is adapted and modified after the Figure 5 of Atreya et al.[13]

    Fig.  5  The different scenarios for different D/H ratios at Neptune[86-87],and the partition between ice and rock composition of Neptune’s interior. From the inferred D/H ratio of Guillot et al.[87],Neptune’s core is 25% rock and between 60%~70% ice-dominated,whereas models presented in Feuchtgruber et al.[86] would imply a partition F = 0.14~0.32,and therefore 68%~86% of heavy components are made of rock,whereas 14%~32% consist of ice

    Table  1  Elemental abundances in the gas and ice giant planets,normalized to Solar values,based on the Table 3 from Mandt et al.[10]

    ElementJupiterSaturnUranusNeptune
    He0.8[56]0.7 ± 0.1[68]0.9 ± 0.2[73]1.2 ± 0.2[77]
    Ne0.1[64]
    O0.4 ± 0.1[65](1.6 ± 0.29)× 10-4[69]
    C4.3 ± 1.1[65]9.6 ± 1.0[70]41.5 ± 16.7[74-75]72.1 ± 19.3[74-75]
    N4.1 ± 2.0[65]2.8 ± 1.1[71]
    S2.9 ± 0.7[65]12.05[72]22.5 ± 11.3[76]22.5 ± 11.3[78]
    P3.3 ± 0.4[66]11.2 ± 1.3[66]
    Ar2.5 ± 0.8[67]
    Kr2.2 ± 0.6[67]
    Xe2.1 ± 0.6[67]
    下载: 导出CSV

    Table  2  Elemental isotopic ratios in the Sun Jupiter,Saturn,Uranus,and Neptune,based on the Table 3 from Atreya et al.[13]

    ElementsSun[90]Jupiter[91]Saturn[91]Uranus[88]Neptune[86]
    D/H(2.0 ± 0.4)× 10–5(2.6 ± 0.7)× 10–5[92]($ {1.70}_{-0.45}^{+0.75} $)× 10–5[93](4.4 ± 0.4)× 10–5(4.1 ± 0.4)× 10–5
    12C/13C0.01120.0108 ± 0.00050.0109 ± 0.001
    14N/15N(2.27 ± 0.08)× 10–3(2.30 ± 0.03)× 10–3 < 2.0 × 10–3
    36Ar/38Ar5.50 ± 0.015.60 ± 0.25
    136Xe/Xe0.07950.076 ± 0.009
    134Xe/Xe0.09790.091 ± 0.007
    132Xe/Xe0.26510.290 ± 0.020
    131Xe/Xe0.21690.203 ± 0.018
    130Xe/Xe0.04380.038 ± 0.005
    129Xe/Xe0.27250.285 ± 0.021
    128Xe/Xe0.02200.018 ± 0.002
    20Ne/22Ne13.613 ± 2
    3He/4He1.66 × 10–4(1.66 ± 0.05)× 10–4
    下载: 导出CSV

    Table  3  Comparison of the different types of instruments used for noble gas and volatile measurements

    Mass SpectrometersMass resolutionmmCharacteristics
    Time-of-flight-mass spectrometer(TOF)~1 000* to 30 000[97] 350 000[98]- Can achieve really high mass resolution
    - High mass range
    Magnetic sector mass spectrometer
    Orbitrap100 000 with m/z = 400mm ~ m-1/2- Achieve really high mass resolution
    - Compact design
    Quadrupole and ion trap < 1 000- Sufficient resolution to separate adjacent mass lines
    - Cannot resolve isobaric interferences
    Other complementary instruments
    Gas Chromatograph Mass Spectrometer(GCMS)- Powerful analysis method- Equipped Viking,Cassini
    -Huygens,MSL on Curiosity,etc.
    Tunable Laser spectrometer(TLS)- Isotopic ratios of selected molecules
    - Ultra-high spectral resolution
    - High accuracies(few % for species,few ‰ for isotopes)
    Helium Abundance Detector(HAD)- Complementary to mass spectrometer
    - Very compact design
    - Energy-efficient
    *ex. of RTOF onboard ROSINA,which has a mm = 5 000
    下载: 导出CSV

    Table  4  List of ion trap mass spectrometers(ITMS)in space or under development,mass range and resolution(mm

    Space missionsYearNameCharacteristics
    Team
    Open University2004—2015Rosetta-PtolemyMass range:12~150 Da
    mm = 150
    NASA-ESA2018ExoMars-MOMAMass range:50~1 000 Da
    mm = 50~500
    ISS mission
    JPL2010—2012VCAMMass range:15~100 Da
    mm = 220
    JPL2019SAMMass range:10~300 Da
    mm = 800
    Further developments
    NASALITMSMass range:20~2 000 Da
    JPLMARINEMass range:10~320 Da
    mm = 750
    mm = 4 000 @ 10~80 Da
    下载: 导出CSV

    Table  5  Comparison of performances between ITMS and QMS

    payloadNameSpace missions(Team)Mass/kgPower/WMass range/DaDynamic
    range
    Sensitivity/
    (ct·s–1·Torr–1
    ITMS[108-109]Rosetta-Ptolemy67P/C-G4.5(MS:0.5)10(MS:1)12~1501 × 1010
    ExoMars-MOMAMars9.37050~1 000
    VCAMISS30.3(MS and pumps:5.4)105(MS:42)15~1002 × 1012
    SAMISS9.554510~3002 × 1013
    LITMSNASA20~2 000
    MARINEJPL7.31410~3201 × 1061 × 1015
    QMSONMS[108]Pioneer(Venus)3.8121~462 × 1013
    NMS[109]Nozomi/Planet-B(Mars)2.87.41~603 × 1012
    GPMS[52]Galileo(Jupiter)13.2(with pump)13(+12)2~1501 × 108
    GCMS[55]Cassini-Huygens(Titan)17.3(with pump)1102~1411 × 1081 × 1014
    SAM[49-50]Curiosity(Mars)40(all)1752~5352 × 1014
    INMS[110]Cassini Orbiter(Saturn and satellites)10.323.31~991 × 1082 × 1014
    NMS[111]LADEE(Moon)11.334.42~1501 × 1086 × 1014
    NGIMS[112]MAVEN(Mars)12362~1501 × 1086 × 1014
    MENCA[113]MOM(Mars)3.56291~3001 × 1010
    下载: 导出CSV
  • [1] MCADAMS J V,FARQUHAR R W,TAYLOR A H,et al. MESSENGER mission design and navigation[J]. Space Science Reviews,2007,131:219-246. doi:  10.1007/s11214-007-9162-x
    [2] MILILLO A,FUJIMOTO M,MURAKAMIG,et al. Investigating Mercury’s environment with the two-spacecraft bepicolombo mission[J]. Space Science Reviews,2020,216(93):1-78.
    [3] ZASOVA L V,GORINOV D A,EISMONT N A,et al. Venera-D:a design of an automatic space station for venus exploration[J]. Solar System Research,2019,53(7):20-24.
    [4] LAI J L,XU Y,ZHANG X P,et al. Comparison of dielectric properties and structure of lunar regolith at Chang'e‐3 and Chang'e-4 landing sites revealed by ground‐penetrating radar[J]. Geophysical Research Letters,2019,46(22):12783-12793. doi:  10.1029/2019GL084458
    [5] GOU S,DI K C,YUE Z Y,et al. Lunar deep materials observed by Chang'e-4 rover[J]. Earth and Planetary Science Letters,2019,528:1-9.
    [6] GOU S,YUE Z Y,DI K C,et al. Impact melt breccia and surrounding regolith measured by Chang'e-4 rover[J]. Earth and Planetary Science Letters,2020,544:1-9.
    [7] STEVENSON D J. Jupiter’s interior as revealed by Juno[J]. Annual Review of Earth and Planetary Sciences,2020,48(1):465-489. doi:  10.1146/annurev-earth-081619-052855
    [8] ALTWEGG K,BALSIGER H,BAR-NUM A,et al. 67P/Churyumov-Gerasimenko,a Jupiter family comet with a high D/H ratio[J]. Science,2015,347(6220):1-4.
    [9] FUJIWARA A,KAWAGUCHI J,YEOMANS D K,et al. The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa[J]. Science,2006,312(5778):1330-1334. doi:  10.1126/science.1125841
    [10] MANDT K E,MOUSIS O,MARTY B,et al. Constraints from comets on the formation and volatile acquisition of the planets and satellites[J]. Space Science Reviews,2015,197:297-342. doi:  10.1007/s11214-015-0161-z
    [11] MOUSIS O,ATKINSON D H,CAVALIÉ T,et al. Scientific rationale for Uranus and Neptune in situ explorations[J]. Planetary and Space Science,2018,155:12-40. doi:  10.1016/j.pss.2017.10.005
    [12] JARMAK S,LEONARD E,AKINS A,et al. QUEST:a new frontiers Uranus orbiter mission concept study[J]. Acta Astronautica,2020,170:6-26. doi:  10.1016/j.actaastro.2020.01.030
    [13] ATREYA S K,HOFSTADTER M H,IN J H,et al. Deep atmosphere composition,structure,origin,and exploration,with particular focus on critical in situ science at the icy giants[J]. Space Science Reviews,2020,216:1-31. doi:  10.1007/s11214-019-0619-5
    [14] HOFSTADTER M D,FLETCHER L N,SIMON A A,et al. Future missions to the giant planets that can advance atmospheric science objectives[J]. Space Science Reviews,2020,216:1-91.
    [15] MANDT K E,MOUSIS O,LUNINE J,et al. Tracing the origins of the ice giants through noble gas isotopic composition[J]. Space Science Reviews,2020,216:1-37. doi:  10.1007/s11214-019-0619-5
    [16] MOUSIS O,AGUICHINE A,ATKINSON D H,et al. Key atmospheric signatures for identifying the source reservoirs of volatiles in Uranus and Neptune[J]. Space Science Reviews,2020,216:1-19. doi:  10.1007/s11214-019-0619-5
    [17] SAYANAGI K M,DILLMAN R A,ATKINSON D H,et al. Small Next-Generation Atmospheric Probe(SNAP)concept to enable future multi-probe missions:a case study for Uranus[J]. Space Science Reviews,2020,216:1-47. doi:  10.1007/s11214-019-0619-5
    [18] VORBURGER A,WURZ P,WAITE H. Chemical and isotopic composition measurements on atmospheric probes exploring Uranus and Neptune[J]. Space Science Reviews,2020,216:1-31. doi:  10.1007/s11214-019-0619-5
    [19] BATALHA N M. Exploring exoplanet populations with NASA’s Kepler Mission[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(35):12647-12654. doi:  10.1073/pnas.1304196111
    [20] ELLIOTT J. Ice giants pre-decadal survey mission study report: JPL D-100520[R]. USA: JPL, 2017.
    [21] LEVISON H F,DONES L,CHAPMAN C R,et al. Could the lunar “late heavy bombardment” have been triggered by the formation of Uranus and Neptune?[J]. Icarus,2001,151(2):286-306. doi:  10.1006/icar.2001.6608
    [22] BOSS A P. Formation of gas and ice giant planets[J]. Earth and Planetary Science Letters,2002,202(3-4):513-523. doi:  10.1016/S0012-821X(02)00808-7
    [23] VENTURINI J,RONCO M P,GUILERA O M. Setting the stage:planet formation and volatile delivery[J]. Space Science Reviews,2020,216:1-32. doi:  10.1007/s11214-019-0619-5
    [24] THOMMES E W,DUNCAN M J,LEVISON H F. The formation of Uranus and Neptune among Jupiter and Saturn[J]. The Astronomical Journal,2002,123(5):2862-2883. doi:  10.1086/339975
    [25] TSIGANIS K,GOMES R,MORBIDELLI A,et al. Origin of the orbital architecture of the giant planets of the Solar System[J]. Nature,2005,435(7041):459-461. doi:  10.1038/nature03539
    [26] GOMES R,LEVISON H F,TSIGANIS K,et al. Origin of the cataclysmic late heavy bombardment period of the terrestrial planets[J]. Nature,2005,435(7041):466-469. doi:  10.1038/nature03676
    [27] MORBIDELLI A,LEVISON H F,TSIGANIS K,et al. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar system[J]. Nature,2005,435(7041):462-465. doi:  10.1038/nature03540
    [28] DESCH S J. Mass distribution and planet formation in the solar nebula[J]. The Astrophysical Journal,2007,671(1):878-893. doi:  10.1086/522825
    [29] HELLED R,BODENHEIMER P. The formation of Uranus and Neptune:challenges and implications for intermediate-mass exoplanets[J]. The Astronomical Journal,2014,789(1):1-11.
    [30] TARTÈSE R,ANAND M,GATTACCECA J,et al. Constraining the evolutionary history of the Moon and the inner Solar System:a case for new returned lunar samples[J]. Space Science Reviews,2019,215:1-50. doi:  10.1007/s11214-018-0569-3
    [31] MÉSZÁROS M,HOFMANN B A,LEYA I. A noble gas data collection of Lunar meteorites[J]. Meteoritics and Planetary Science,2018,53(5):1104-1107. doi:  10.1111/maps.13037
    [32] SHARP Z,SHEARER C,MCKEEGAN K,et al. The chlorine isotope composition of the moon and implications for an anhydrous mantle[J]. Science,2010,329(5995):1050-1053. doi:  10.1126/science.1192606
    [33] PANIELLO R C,DAY J M D,MOYNIER F. Zinc isotopic evidence for the origin of the Moon[J]. Nature,2012,490(7420):376-380. doi:  10.1038/nature11507
    [34] BOGARD D D,FUNKHOUSER J G,SHAEFFER O A,et al. Noble gas abundances in lunar material-cosmic-ray spallation products and radiation ages from the sea of tranquility and the ocean of storm[J]. Journal of Geophysical Research,1971,76(11):2757-2779. doi:  10.1029/JB076i011p02757
    [35] REEDY R C,ARNOLD J R. Interaction of solar and galactic cosmic-ray particles with the Moon[J]. Journal of Geophysical Research,1972,77(4):537-555. doi:  10.1029/JA077i004p00537
    [36] HARTUNG J B. Lunar rock surfaces as detectors of solar processes. [C]//Conference on The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites. Boulder, CO: New York and Oxford, Pergamon Press, 1980.
    [37] RAO N N,VENKATESAN T R. Solar-flare produced 3He in lunar samples[J]. Nature,1980,286(5826):788-790.
    [38] WIELER R. Noble gases in the Solar system[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):21-70. doi:  10.2138/rmg.2002.47.2
    [39] BARNES J J,KRING D A,TARTÈSE R,et al. An asteroidal origin for water in the Moon[J]. Nature Communications,2016,7(1):1-10.
    [40] CURRAN N M,NOTTINGHAM M,ALEXANDER L,et al. A database of noble gases in lunar samples in preparation for mass spectrometry on the Moon[J]. Planetary and Space Sciences,2020,182:1-12.
    [41] ANAND M,CRAWFORD I A,BALAT-PICHELIN M,et al. A brief review of chemical and mineralogical resources on the Moon and likely initial in Situ Resource Utilization(ISRU)applications[J]. Planetary and Space Sciences,2012,74:42-48. doi:  10.1016/j.pss.2012.08.012
    [42] BARBER S J, WRIGHT I P, ABERNETHY F, et al. ProSPA: analysis of lunar polar volatiles and ISRU demonstration on the Moon[C]//49th Lunar and Planetary Science Conference. Woodlands, Texas: Lunar and Planetary Science Conference, 2018.
    [43] COLAPRETE A,ELPHIC R C,HELDMANN J,et al. An Overview of the Lunar Crater Observation and Sensing Satellite(LCROSS)[J]. Space Science Reviews,2012,167:3-22. doi:  10.1007/s11214-012-9880-6
    [44] SANGHA J. Volatile ice deposits in lunar polar regions and their sources[D]. Toronto, Ontario: York University, 2018.
    [45] GREENWOOD J P,KARATO S-I,VANDER KAADEN K E,et al. Water,and volatile inventories of Mercury,Venus,the Moon,and Mars[J]. Space Science Reviews,2018,214:1-39. doi:  10.1007/s11214-017-0435-8
    [46] FEGLEY J B. Venus-treatise on geochemistry[M]. Holland: ScienceDriect Publication, 2014.
    [47] OWEN T,BIEMANN K. Composition of the atmosphere at the surface of Mars:Detection of argon-36 and preliminary analysis[J]. Science,1976,193:801-803. doi:  10.1126/science.193.4255.801
    [48] OWEN T,BIEMANN K,RUSHNECK D,et al. The composition of the atmosphere at the surface of Mars[J]. Journal of Geophysical Research,1977,82(B28):4635-4640.
    [49] MAHAFFY P R,WEBSTER C R,CABANE M,et al. The sample analysis at Mars investigation and instrument suite[J]. Space Science Reviews,2012,170(1-4):401-478. doi:  10.1007/s11214-012-9879-z
    [50] MAHAFFY P R,WEBSTER C R,ATREYA S K,et al. Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover[J]. Science,2013,341(6134):263-266.
    [51] KOUNAVES S P,OBERLIN E A. Volatiles measured by the phoenix lander at the northern plains of Mars[J]. Volatiles in the Martian crust,2019,341(6134):265-283.
    [52] NIEMANN H B,HARPOLD D N,ATREYA S K,et al. Galileo Probe Mass Spectrometer experiment[J]. Space Science Reviews,1992,60:111-142.
    [53] NIEMANN H B,ATREYA S K,CARIGNAN G R,et al. The Galileo Probe Mass Spectrometer:composition of Jupiter’s atmosphere[J]. Science,1996,272(5263):846-849. doi:  10.1126/science.272.5263.846
    [54] NIEMANN H B,ATREYA S K,CARIGNAN G R,et al. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer[J]. Journal of Geophysica Research,Planets,1998,103(E10):22831-22845. doi:  10.1029/98JE01050
    [55] VON ZAHN U,HUNTEN D M,LEHMACHER G. Helium in Jupiter’s atmosphere:Results from the Galileo probe helium interferometer experiment[J]. Journal of Geophysica Research,1998,103(E10):22815-22830. doi:  10.1029/98JE00695
    [56] NIEMANN H,ATREYA S,BAUER S J,et al. The Gas Chromatograph Mass Spectrometer Aboard Huygens. Huygens:Science,Payload and Mission[J]. ESA Special Publication,1997,1177:1-85.
    [57] MELTZE R M. The Cassini-Huygens visit to Saturn-An historic mission to the ringed planet[M]. Switzerland: Springer, 2015.
    [58] GUILLOT T, GAUTIER D. Giant planets. Treatise on Geophysics[M]. Holland: ScienceDriect Publication, 2015.
    [59] BISHOP J, ATREYA S K, ROMANI P N, et al. The middle and upper atmosphere of Neptune[M]. Tucson, Arizona: University of Arizona Press, 1995.
    [60] PODOLA K M, HUBBARD W B, STEVENSON D J. Models of Uranus interior and magnetic field[M]. Tucson, AZ: University of Arizona Press, 1991.
    [61] ATREYA S K, BAINES K H, EGELER P A. An ocean of water ammonia on Neptune and Uranus: clues from tropospheric cloud structure[C]//DPS meeting #38; Bulletin of the American Astronomical Society. USA: American Astronomical Society, 2006.
    [62] ATREYA S K,MAHAFFY P R,NIEMANN H B,et al. Composition and Origin of the Atmosphere of Jupiter - An Update and Implications for the Extrasolar Giant Planets[J]. Planetary and Space,Science,2003,51(2):105-112.
    [63] MAHAFFY P R,NIEMANN H B,ALPERT A,et al. Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo probe mass spectrometer[J]. Journal of Geophysical Research,2000,105(E6):15061-15071. doi:  10.1029/1999JE001224
    [64] BIENSTOCK B, ATKINSON D, BAINES K, et al. Neptune polar orbiter with probes[C]//NASA Proceedings of Planetary Probes Workshop. USA: NASA, 2004.
    [65] ATREYA S K, WONG A S. Clouds of Neptune and Uranus[C]//Proceedings, International Planetary Probe Workshop. [S.l.]: NASA Ames, 2004.
    [66] SROMOVSKY L A,FRY P M,KIM J H. Methane on Uranus:the case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy[J]. Icarus,2011,215(1):292-312. doi:  10.1016/j.icarus.2011.06.024
    [67] LODDERS K. Jupiter formed with more tar than ice[J]. The Astrophysical Journal,2004,611(1):587-597. doi:  10.1086/421970
    [68] GAUTIER D,HERSANT F,MOUSIS O,et al. Enrichments of volatiles in Jupiter:a new interpretation of the Galileo measurements[J]. The Astrophysical Journal,2001,550(2):227-230. doi:  10.1086/319648
    [69] GUILLOT T,HUESO R. The composition of Jupiter:sign of a(relatively)late formation in a chemically evolved protosolar disc[J]. Monthly Notices of the Royal Astronomical Society,2006,367(1):L47-L51. doi:  10.1111/j.1745-3933.2006.00137.x
    [70] WONG M H,MAHAFFY P R,ATREYA S K,et al. Updated Galileo probe mass spectrometer measurements of carbon,oxygen,nitrogen,and sulfur on Jupiter[J]. Icarus,2004,171(1):153-170. doi:  10.1016/j.icarus.2004.04.010
    [71] FLETCHER L N,ORTON G S,TEANBY N A,et al. Phosphine on Jupiter and Saturn from Cassini/CIRS[J]. Icarus,2009,202(2):543-564. doi:  10.1016/j.icarus.2009.03.023
    [72] CONRATH B J,GAUTIER D. Saturn helium abundance:A reanalysis of voyager measurements[J]. Icarus,2000,144(1):124-134. doi:  10.1006/icar.1999.6265
    [73] De GRAAUW T,FEUCHTGRUBER H,BEZARD B,et al. First results of ISO-SWS observations of Saturn:detection of CO2,CH3C2H,C4HL2 and tropospheric H2O[J]. Astronomy and Astrophysics,1997,321:L13-L16.
    [74] FLETCHER L N,ORTON G S,TEANBY N A,et al. Methane and its isotopologues on Saturn from Cassini/CIRS observations[J]. Icarus,2009,199(2):351-367. doi:  10.1016/j.icarus.2008.09.019
    [75] FLETCHER L N,ORTON G S,DE PATER I,et al. The aftermath of the July 2009 impact on Jupiter:ammonia,temperatures and particu-lates from Gemini thermal infrared spectroscopy[J]. Icarus,2011,211(1):568-586. doi:  10.1016/j.icarus.2010.09.012
    [76] BRIGGS F H,SACKETT P D. Radio observations of Saturn as a probe of its atmosphere and cloud structure[J]. Icarus,1989,80(1):77-103. doi:  10.1016/0019-1035(89)90162-0
    [77] CONRATH B J,HANEL R,GAUTIER D,et al. The helium abundance of Uranus from Voyager measurements[J]. Journal of Geophysical Research,1987,92(A13):15003-15010. doi:  10.1029/JA092iA13p15003
    [78] KARKOSCHKA E,TOMASKO M G. The haze and methane distributions on Uranus from HST-STIS spectroscopy[J]. Icarus,2009,202(1):287-309. doi:  10.1016/j.icarus.2009.02.010
    [79] KARKOSCHKA E,TOMASKO M G. The haze and methane distributions on Neptune from HST-STIS spectroscopy[J]. Icarus,2011,211(1):780-797. doi:  10.1016/j.icarus.2010.08.013
    [80] DE PATER I,ROMANI P N,ATREYA S K. Possible microwave absorption by H2S gas in Uranus’ and Neptune’s atmospheres[J]. Icarus,1991,91(2):220-233. doi:  10.1016/0019-1035(91)90020-T
    [81] CONRATH B J,GAUTIER D,LINDAL G F,et al. The helium abundance of Neptune from Voyager measurements[J]. Journal of Geophysical Research,1991,96(S01):18907-18919. doi:  10.1029/91JA01703
    [82] LEWIS J S. The clouds of Jupiter and the NH3-H2O and NH3-H2S systems[J]. Icarus,1969,10(3):365-378. doi:  10.1016/0019-1035(69)90091-8
    [83] WEIDENSCHILLING S J,LEWIS J S. Atmospheric and cloud structures of the jovian planets[J]. Icarus,1973,20(4):465-476. doi:  10.1016/0019-1035(73)90019-5
    [84] SUDHIR A K, EGELER P A, WONG A. Water-ammonia ionic ocean on Uranus and Neptune-clue from tropospheric hydrogen sulfide clouds[C]//American Geophysical Union, Fall Meeting 2005. USA: AGU, 2005.
    [85] LINDAL G F,LYONS J R,SWEETNAM D N,et al. The atmosphere of Uranus:results of radio occultation measurements with Voyager 2[J]. Journal of Geophysical Research,1987,92(A13):14987-15001. doi:  10.1029/JA092iA13p14987
    [86] FEUCHTGRUBER H,LELLOUCH E,ORTON G,et al. The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations[J]. Astronomy and Astrophysics,2013,551:A126. doi:  10.1051/0004-6361/201220857
    [87] GUILLOT T. Interiors of giant planets inside and outside the solar system[J]. Science,1999,286(5437):72-77. doi:  10.1126/science.286.5437.72
    [88] YANG L,CIESLA F J,ALEXANDER C M O D. The D/H ratio of water in the solar nebula during its formation and evolution[J]. Icarus,2013,226(1):256-267. doi:  10.1016/j.icarus.2013.05.027
    [89] ALI-DIB M,LAKHLANI G. What is Neptune’s D/H ratio really telling us about its water abundance?[J]. Monthly Notices of the Royal Astronomical Society,2018,476(1):1169-1173. doi:  10.1093/mnras/sty252
    [90] ASPLUND,M,GREVESSE,N,SAUVAL,A. J,and SCOTT,P The chemical composition of the Sun[J]. Annunal Reviews of Astronomy and Astrophysics,2009(47):481-522.
    [91] ATREYA S K, CRIDA A, GUILLOT T, et al. The origin and evolution of Saturn, with exoplanet perspective, in Saturn in the 21st Century[M]. Cambridge, UK: Cambridge University Press, 2019.
    [92] MAHAFFY P R,DONAHUE T M,ATREYA S K,et al. Galileo probe measurements of D/H and 3He/4He in Jupiter’s atmosphere[J]. Space Science Reviews,1998,84:251-263. doi:  10.1023/A:1005091806594
    [93] LELLOUCH E,BÉZARD B,FOUCHET T,et al. The deuterium abundance in Jupiter and Saturn from ISO-SWS observations[J]. Astronomy and Astrophysics,2001,370:610-622. doi:  10.1051/0004-6361:20010259
    [94] HANSEN C J, ALJABRI A S, BANFIELD D, et al. Neptune science with Argo - a voyage through the outer Solar system[EB/OL].(2020-12-8). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.1068&rep=rep1&type=pdf.
    [95] FULCHIGNONI M, ANGRILLI F, BIANCHINI G, et al. The Huygens Atmospheric Structure Instrument(HASI)[C]//Huygens: Science, Payload and Mission, Proceedings of an ESA conference. [S.l.]: ESA, 1997.
    [96] FERRI F,ANGRILLI F,BIANCHINI G,et al. Huygens Atmospheric Structure Instrument of Huygens probe on Cassini mission[J]. Acta Astronautica,2002,50:249-255. doi:  10.1016/S0094-5765(01)00161-8
    [97] BROCKWELL T G, MEECH K J, PICKENS K, et al. The mass spectrometer for planetary exploration(MASPEX)[C]//2016 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2016.
    [98] TOYODA M,OKUMURA D,ISHIHARA M,et al. Multi-turn time-of-flight mass spectrometers with electrostatic sectors[J]. Journal of Mass Spectrometry,2003,38(11):1125-1142. doi:  10.1002/jms.546
    [99] OTT U, SWINDLE T D, SCHWENZER S P. Noble gases in Martian meteorites: budgets, sources, sinks, and processes[M]. Netherlands: Elsevier, 2019.
    [100] LUSPAY-KUTI A,HÄSSIG M,FUSELIER S A,et al. Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS-Implications for nucleus heterogeneity?[J]. Astronomy and Astrophysics,2015,583(A4):1-8.
    [101] LE ROY L,ALTWEGG K,BALSIGER H,et al. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA[J]. Astronomy and Astrophysics,2015,583(A1):1-12.
    [102] MALL U,ALTWEGG K,BALSIGER H,et al. High-Time Resolution In-situ Investigation of Major Cometary Volatiles around 67P/C-G at 3.1-2.3 AU Measured with ROSINA-RTOF[J]. The Astrophysical Journal,2016,819(2):1-9.
    [103] MARTY B,ALTWEGG K,BALSIGER H,et al. Xenon isotopes in Comet 67P/Churyumov-Gerasimenko show comets contributed to Earth's atmosphere[J]. Science,2017,356(6342):1069-1072. doi:  10.1126/science.aal3496
    [104] SCHERER S,ALTWEGG K,BALSIGER H,et al. A novel principle for an ion mirror design in time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry,2006,251(1):73-81. doi:  10.1016/j.ijms.2006.01.025
    [105] SIMCIC J, NIKOLIC D, BELOUSOV A, et al. Quadrupole Ion Trap Mass Spectrometer for ice giant atmospheres exploration[C]//EGU General Assembly 2020. [S.l.]: EGU, 2020.
    [106] MADZUNKOV S M,NIKOLIĆ D. Accurate Xe isotope measurement using JPL ion trap[J]. American Society for Mass Spectrometry,2014,25:1841-1852. doi:  10.1007/s13361-014-0980-2
    [107] AREVALO J R, BRINCKERHOFF W B, MAHAFFY P R, et al. It’s a trap! A review of MOMA and others ion traps in space or under development[R]. USA: NASA, 2012.
    [108] DARRACH M, CHUTJIAN A, BORNSTEIN B, et al. on-orbit measurements of the ISS atmosphere by the vehicle cabin atmosphere monitor[C]//41st International Conference on Environmental Systems. Portland, Oregon: AIAA, 2011.
    [109] NIEMANN H B,BOOTH J R,HARTLE R E,et al. Pioneer Venus Orbiter Neutral Gas Mass Spectrometer Experiment[J]. IEEE transactions on geoscience and remote sensing,1980,18(1):60-65.
    [110] NIEMANN H B,HARPOLD D N,FENG S,et al. The Planet-B neutral gas mass spectrometer[J]. Earth,Planets and Space,1998,50:785-792.
    [111] WAITE JR J H,LEWIS W S,KASPRZAK W T,et al. The Cassini Ion and Neutral Mass Spectrometer(INMS)investigation[J]. Space Science Reviews,2004,114:113-231. doi:  10.1007/s11214-004-1408-2
    [112] ELPHIC R C,DELORY G T,HINE B P,et al. The lunar atmosphere and dust environment explorer mission[J]. Space Science Reviews,2014,185:3-25. doi:  10.1007/s11214-014-0113-z
    [113] MAHAFFY P R,BENNA M,KING T,et al. The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission[J]. Space Science Reviews,2015,195:49-73. doi:  10.1007/s11214-014-0091-1
    [114] BHARDWAJ A,MOHANKUMAR S,DAS T P,et al. MENCA experiment aboard India’s Mars orbiter mission[J]. Current Science,2015,109(6):1106-1113. doi:  10.18520/cs/v109/i6/1106-1113
    [115] FLETCHER L N,DE PATER I,ORTON G S,et al. Ice giant circulation patterns:implications for atmospheric probes[J]. Space Science Reviews,2020,216:1-38. doi:  10.1007/s11214-019-0619-5
    [116] AGNOR C, BARR A, BIERHAUS B, et al. The exploration of Neptune and Triton[R]. USA: Planetary Science Decadal Survey, 2009.
  • 加载中
计量
  • 文章访问数:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 修回日期:  2020-11-30
  • 网络出版日期:  2020-12-17

The Exploration of Neptune:A Noble Gas and Volatile Perspective

doi: 10.15982/j.issn.2096-9287.2020.20200057
  • 中图分类号: P356

摘要: 地外天体的探测目标主要是太阳系中离地球较近的行星和天体,例如水星、金星、月球、火星、木星、小行星67P和近地小行星25143糸川。目前,人类还没有明确提出对太阳系中两大冰巨行星天王星和海王星的探测计划。人类探测仍停留在“旅行者2号”探测器分别于1986年1月和1989年8月飞掠天王星和海王星时传回的数据。在过去的几十年间,越来越多类属冰巨行星的系外行星被发现,而且冰巨行星比类似木星和土星的气态巨行星数量更多,加深对冰巨行星的了解势在必行。其中,行星大气组成,特别是稀有气体和挥发分的分布尤为重要。详细回顾了对太阳系中各天体挥发分的探测及结果;总结了天王星和海王星的稀有气体和挥发分的浓度、分布和演化过程;讨论了探索冰巨行星的星际探测任务的流程、可行性以及探测器载荷选择。提出了利用离子阱质谱仪作为中国外太阳系探测任务中探索冰巨行星科学载荷的可行性。

English Abstract

SMITHThomas, 贺怀宇, 刘冉冉. 海王星探测:稀有气体和挥发分分析[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200057
引用本文: SMITHThomas, 贺怀宇, 刘冉冉. 海王星探测:稀有气体和挥发分分析[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200057
Reference format: SMITH T,HE H Y,LIU R R. The exploration of Neptune:a noble gas and volatile perspective[J]. Journal of Deep Space Exploration,2020,7 (6) : 584-604 doi:  10.15982/j.issn.2096-9287.2020.20200057
Citation: Reference format: SMITH T,HE H Y,LIU R R. The exploration of Neptune:a noble gas and volatile perspective[J]. Journal of Deep Space Exploration,2020,7 (6) : 584-604 doi:  10.15982/j.issn.2096-9287.2020.20200057
参考文献 (116)

返回顶部

目录

    /

    返回文章
    返回