Modeling and Simulation for Power Generation of Solar Array in Martian Surface Environment
-
摘要: 火星表面环境与近地空间环境有很大的不同,火星表面太阳电池阵发电受光照强度、火星尘、温度、太阳散射等因素影响,具有较大的复杂性。在调研国内外研究及探测成果的基础上,通过试验与建模计算相结合的方式,提出了一种火星表面太阳电池阵发电计算建模方法,建立了相应的仿真计算模型,应用于中国首次火星探测任务太阳电池阵设计及发电功率预算,成为整器能量平衡分析及设计的依据。该计算建模方法可为后续火星探测及其它深空探测任务提供参考。Abstract: The environments are very different between Martian Surface and near-earth space. To estimate the output power of the Solar Array on the Mars surface is not easy, which is affected by the solar radiation, temperature, dust and diffuse irradiance. A method to calculate the output power of Solar Array in Martian Surface Environment is proposed in this paper based on a survey to the results of research all over the world. Models about how the illumination, temperature and dust to affect the power generation of the Solar Array on Martian surface are established. Those numeric models and method are used to improve the power balance of the Mars Rover in the first Mars exploration mission of china and are a reference for the intending Mars and other deep-space exploration missions.
-
Key words:
- Mars /
- solar array /
- power generation /
- modeling and simulation
Highlights● A method to calculate the Light intensity on Martian Surface is proposed in considering of the effect of dust. ● In considering of the effect of temperature,diffuse irradiance,sun incident angle,a method to calculate the output power of the Solar Array in a Solar-battery power system on the Mars surface is proposed. ● The method to calculate the output power of the Solar Array for different power systems based on MPPT or S3R control technique is presented. ● Through the method and models introducing in this paper,the calculating result of the output power of the Solar Array designed for MARS rover of china first MARS exploration is presented. -
表 1 归一化光强拟合系数矩阵p(i,j,k)(k = 0时)
Table 1 Normalized flux fitting coefficent matrixp(i,j,k)(k = 0)
j\i 0 1 2 3 4 5 0 1.002 8 –0.228 681 0.019 613 0.000 231 –0.000 13 0.000 003 1 –0.450 073 1.335 955 –1.131 691 0.402 126 –0.063 967 0.003 758 2 5.566 705 –16.912 405 13.739 701 –4.756 079 0.743 74 –0.043 159 3 –22.471 579 64.909 973 –52.509 47 17.997 548 –2.786 548 0.160 34 4 36.334 497 –101.800 319 79.895 539 –26.762 885 4.074 117 –0.231 476 5 –20.420 49 53.207 148 –39.949 537 12.977 108 –1.931 169 0.107 837 表 2 归一化光强拟合系数矩阵p(i,j,k),k = 1时
Table 2 Normalized flux fitting coefficent matrixp(i,j,k)(k = 1)
j\i 0 1 2 3 4 5 0 0.009 814 0.226 193 –0.117 733 0.030 579 –0.004 09 0.000 218 1 –0.156 701 0.396 821 –0.313 648 0.099 227 –0.013 508 0.000 651 2 1.361 122 –3.758 111 3.007 907 –0.987 457 0.141 693 –0.007 32 3 –4.365 924 12.539 251 –10.394 165 3.486 452 –0.513 23 –0.027 401 4 5.991 693 –17.498 138 14.291 37 –4.765 323 0.703 675 –0.037 96 5 –2.915 099 8.275 686 –6.593 125 2.173 999 –0.320 308 0.17335 表 3 中国首辆火星车用太阳电池主要参数及典型值
Table 3 The representative parameter value of the solar cell
参数名称 参数符号 典型值 备注 发电效率 ηcell 0.31 最佳工作点工作电压 Vm 2.2 V 工作电流密度 Imd 0.005 3 A/cm2 测试光强S0为
360 W/m2温度电压系数 Ctv –6.8 × 10–3 V/℃ 温度电流系数 Cti 9 × 10-6 A/(cm2·℃) 额定温度 T0 25 ℃ 单片电池面积 As 12/24 cm2 表 4 太阳电池阵常见衰减典型值
Table 4 Therepresentative value of the solar array loss
符号 名称 典型值 备注 KZH 组合损失 0.98 KZW 紫外损失 0.99 KRB 温度交变损失 1 短期可忽略 KCS 测试损失 0.99 KGP 盖片损失 0.97 KFZ 每天的辐照损失 0.06/90 -
[1] APPELBAUM J,LANDIS G. Photovoltaic arrays for martian surface power[J]. Acta Astronautica,1993,30(C):127-142. [2] 刘治钢,王飞,陈燕,等. 火星表面环境对太阳电池阵设计影响分析与对策[J]. 航天器工程,2016,2(5):25-239. doi: 10.3969/j.issn.1673-8748.2016.05.004LIU Z G,WANG F,CHEN Y,et al. Impact analysis and solution of solar array design in martian surface environment[J]. Spacecraft Engineering,2016,2(5):25-239. doi: 10.3969/j.issn.1673-8748.2016.05.004 [3] 阳光. 深空探测—火星探测[M]. 北京: 国防工业出版社, 2016. [4] HABERLE M P, MCKAY P C, POLLACK B J. Atmospheric effects on the utility of solar power on Mars[R]. USA: NASA Ames Research Center, 1998. [5] 崔鹏,郄毅鹏,尹兴月,等. 大光照角入射对太阳电池阵的影响分析与验证[J]. 电源技术,2014,38(9):1638.CUI P,QIE Y P,YIN X Y,et al. Impact of large light angle on solar array and its verification[J]. Power Technology,2014,38(9):1638. [6] SHI H P, LIU Z G, CHEN Y. MARS rover electrical power system[C]//The 12th European Space Power Conference. French: [s.n.], 2019. -
计量
- 文章访问数: 180
- 被引次数: 0