中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星车低密度纳米气凝胶隔热材料制备及性能研究

艾素芬 向艳超 雷尧飞 薛淑艳 沈宇新 殷雷 刘佳 陈维强

艾素芬, 向艳超, 雷尧飞, 薛淑艳, 沈宇新, 殷雷, 刘佳, 陈维强. 火星车低密度纳米气凝胶隔热材料制备及性能研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200036
引用本文: 艾素芬, 向艳超, 雷尧飞, 薛淑艳, 沈宇新, 殷雷, 刘佳, 陈维强. 火星车低密度纳米气凝胶隔热材料制备及性能研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200036
AI Sufen, XIANG Yanchao, LEI Yaofei, XUE Shuyan, SHEN Yuxin, YIN Lei, LIU Jia, CHEN Weiqiang. Preparation and Characterization of Ultra-low Density Nano-aerogel Insulation Materials for Mars Rover[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200036
Citation: AI Sufen, XIANG Yanchao, LEI Yaofei, XUE Shuyan, SHEN Yuxin, YIN Lei, LIU Jia, CHEN Weiqiang. Preparation and Characterization of Ultra-low Density Nano-aerogel Insulation Materials for Mars Rover[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200036

火星车低密度纳米气凝胶隔热材料制备及性能研究

doi: 10.15982/j.issn.2096-9287.2020.20200036
基金项目: 国家自然科学基金资助项目(51761145103);载人航天领域预先研究项目(030301)
详细信息
    通讯作者:

    艾素芬(1979– ),女,博士,研究员,主要研究方向:航天高性能防隔热材料。通讯地址:北京市5142信箱439分箱(100094)电话:(010)68114575 E-mail:sufenai529s@163.com

  • ● Silica aerogel composites with density as 30 kg/m3 were first prepared and applied in Mars Rover. ● The room temperature conductivity of low density aerogel composites was 0.006 6 W/(m·K)under the martial atmosphere. ● The properties and structure of low density aerogel composites were stable after the thermal cycling,thermal vacuum and other thermal environments experiments. ● The low density aerogel composite has been applied the Mars Rover in China.
  • 中图分类号: V19

Preparation and Characterization of Ultra-low Density Nano-aerogel Insulation Materials for Mars Rover

  • 摘要: 火星存在平均压力约600 Pa的CO2气体环境,以及最低温度约–123 ℃的温度环境,超轻质、高效隔热材料是火星车热控系统的关键性材料,保证内部电子元器件正常工作。气凝胶材料是目前大气环境下导热系数最低的固体材料,是火星车最佳的保温隔热材料方案。针对我国火星车应用需求,研制了密度小于30 kg/m3的低密度纳米气凝胶隔热材料,研究了低密度气凝胶的制备、复合材料的制备、超临界CO2干燥以及低密度气凝胶复合材料机加等制备过程,并表征了材料的热物理性能、真空挥发性以及热循环、热真空等空间热环境下的性能,表明低密度纳米气凝胶隔热材料在火星环境下具有良好的结构稳定性和隔热性能稳定性,可满足空间探测的应用需求。该材料具有良好的机加性能和优异的隔热性能,它的火星大气下室温导热系数为0.006 6 W/(m·K),实现了在我国火星车上的工程应用。
    Highlights
    ● Silica aerogel composites with density as 30 kg/m3 were first prepared and applied in Mars Rover. ● The room temperature conductivity of low density aerogel composites was 0.006 6 W/(m·K)under the martial atmosphere. ● The properties and structure of low density aerogel composites were stable after the thermal cycling,thermal vacuum and other thermal environments experiments. ● The low density aerogel composite has been applied the Mars Rover in China.
  • 图  1  制备前驱体的半水解–半缩聚反应

    Fig.  1  Semi-hydrolysis-condensation reaction to prepare silica precursor

    图  2  密度为20 kg/m3的二氧化硅胶气凝胶

    Fig.  2  Low density silica aerogel with density as 20 kg/m3

    图  3  低密度气凝胶氮气吸附–脱附曲线

    Fig.  3  N2 adsorption and desorption isotherms of low density aerogel

    图  4  低密度气凝胶孔径分布曲线

    Fig.  4  Pore diameter distribution of low density aerogel

    图  5  低密度气凝胶电子显微镜图

    Fig.  5  TEM images of of low density aerogel

    图  6  密度为30 kg/m3的低密度气凝胶复合材料

    Fig.  6  Low density aerogel composites with density as 30 kg/m3

    图  7  低密度纳米气凝胶复合材料的SEM图

    Fig.  7  SEM images of low density aerogel composites

    图  8  低密度纳米气凝胶材料机加后图片

    Fig.  8  Low density aerogel composites after being machined

    图  9  耐驰GHP456导热系数测试设备

    Fig.  9  Netzsch GHP 456 thermal conductivity testing equipment

    图  10  不同气压和不同温度下的导热系数

    Fig.  10  Thermal conductivity of low density aerogel at different pressure and temperature

    表  1  真空条件下气凝胶复合材料挥发性能测试结果

    Table  1  Volatility test results of aerogel composites under vacuum conditions wt%

    样品总质量损失可凝挥发物吸湿率
    S10.340.041.6
    S20.300.051.4
    S30.310.041.4
    S40.340.040.6
    平均值0.322 50.042 51.25
    下载: 导出CSV

    表  2  热环境试验条件

    Table  2  The condition of thermal environment experiment

    项目循环温度/(℃)气氛
    热循环–145~+85大气环境
    热真空1–145~+85压力 ≤ 6.65 × 10–3 Pa
    热真空2–115~+851 400 Pa CO2气体
    下载: 导出CSV

    表  3  不同环境试验条件下气凝胶复合材料的导热系数和尺寸收缩率

    Table  3  Thermal conductivity and dimensional shrinkage under various environmental test conditions of aerogel composites

    试验1 400 Pa CO2气氛导热系数/
    [W/(m·K)]
    尺寸收缩率/%
    (长 × 宽 × 高)
    –40 ℃25 ℃
    热循环0.003 30.003 30.007 00.006 90.2 × 0.1 × 0.7
    热真空10.003 30.003 50.006 90.007 00.2 × 0.1 × 0
    热真空20.003 50.003 50.007 00.007 00.03 × 0.7 × 0
    下载: 导出CSV

    表  4  电离总剂量试验前后复合材料的性能

    Table  4  The performance of aerogel composites before and after the total ionizing dose experiment

    1 400 Pa CO2气氛导热系数/
    [W/(m·K)]
    尺寸收缩率/%
    (长 × 宽 × 高)
    –40 ℃25 ℃
    0.003 40.003 30.007 00.006 90.03 × 0.03 × 0.04
    下载: 导出CSV
  • [1] HÜSING N,SCHUBERT U. Aerogels-airy materials:chemistry,structure,and properties[J]. Angewandte Chemie International Edition,1998(37):22-45.
    [2] DU A,ZHOU B,ZHANG Z H,et al. A special material or anew state of matter:a review and reconsideration of the aerogel[J]. Materials,2013(6):941-968.
    [3] TILLOTSON T M,HRUBESH L W. Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process[J]. Journal of Non-Crystalline Solids,1992(145):44-50.
    [4] NOVAK K S,PHILLIPS C J,BURIR G C,et al. Development of a thermal control architecture for the Mars exploration rovers[J]. AIP Conference Proceedings,2003,654(1):194-206.
    [5] BROWNLEE D,TSOU P,et al. Comet 81P/Wild 2 under a microscope[J]. Science,2006(314):1711-1716.
    [6] STEVEN M J, JEFFERY S. Application of aerogels in space exploration[M]. [S.l]: Aerogels Handbook, 2011: 721-746.
    [7] 于登云,孙泽洲,孟林智,等. 火星探测发展历史与未来展望[J]. 深空探测学报(中英文),2016(3):108-113.

    YU D Y,SUN Z Z,MENG L Z,et a1. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration,2016(3):108-113.
    [8] 罗燚,姜勇刚,冯军宗,等. 常压干燥制备SiO2气凝胶复合材料研究进展[J]. 材料导报,2018(32):780-787.

    LUO Y,JIANG Y G,FENG J Z,et al. Progress on the preparation of SiO2 aerogel composites by ambient pressure drying technique[J]. Materials Review,2018(32):780-787.
    [9] 张丽娟,王洋,李文静,等. 耐高温透波气凝胶复合材料性能[J]. 宇航材料工艺,2015(4):47-53. doi:  10.3969/j.issn.1007-2330.2015.04.011

    ZHANG L J,WANG Y,LI W J,et al. Properties of high temperature resistant wave-transparent aerogel composites[J]. Aerospace Materials&Technology,2015(4):47-53. doi:  10.3969/j.issn.1007-2330.2015.04.011
    [10] XU C,SHEN J,ZHOU B. Ultralow density silica aerogels prepared with PEDS[J]. Journal of Non-Crystalline Solids,2009(355):492-495.
    [11] 王珏,黎青,沈军,等. 二步法制备低密度SiO2气凝胶[J]. 原子能科学技术,1996(30):41-45.

    WANG Y,LI Q,SHEN J,et al. Ultra-low density SiO2 aerogels prepared by a two-step process[J]. Atomic Energy Science and Technology,1996(30):41-45.
    [12] PETER T. Silica aerogel captures cosmic dust induct[J]. Journal of Non-Crystalline Solids,1995(186):415-427.
    [13] 孙言,艾素芬,雷尧飞,等. 低密度二氧化硅气凝胶微观结构与隔热性能表征[J]. 北京化工大学学报(自然科学版),2018(1):43-48.

    SUN Y,AI S F,LEI Y F,et al. Micro-srtucture and thermal insulation performance characterization of low density SiO2 aerogel[J]. Journal of Beijing University of Chemical Technology(Natural Science),2018(1):43-48.
    [14] HICKEY G S. Materials for thermal control for Mars surface operations[J]. MRS Proceedings,1998,551:25-31.
    [15] 张玉会,刘燕妮,杨建明,等. SiO2气凝胶复合保温材料的热湿性能研究[J]. 新型建筑材料,2017(44):67-71.

    ZHANG Y H,LIU Y N,YANG J M,et al. Hygrothermal performance of silica aerogel composite for thermal insulation material[J]. New Building Materials,2017(44):67-71.
    [16] 艾素芬,孙言,雷尧飞,等. 低密度气凝胶的高温结构变化及其耐温性研究[J]. 北京化工大学学报(自然科学版),2019(46):63-68.

    AI S F,SUN Y,LEI Y F,et al. Characterization of the high-temperature resistance performance of silica aerogels with different densities[J]. Journal of Beijing University of Chemical Technology(Natural Science),2019(46):63-68.
  • [1] 石海平, 陈燕, 贾阳, 屈严, 刘治钢, 王文强, 彭松.  太阳电池阵火星环境发电建模仿真 . 深空探测学报(中英文), doi: 10.15982/j.issn.2096-9287.2020.20200042
    [2] 徐侃彦, 马玲玲, 印红, 张轶男.  火星无人探测与行星保护 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.002
    [3] 柳青峰, 李博, 康冬鹏, 杨清波, 马晶, 谭立英, 于思源, 赵生, 王淇.  深空辐射条件下EDFA波分复用性能研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.06.005
    [4] 孔令高, 张爱兵, 田峥, 郑香脂, 王文静, 刘勇, 丁建京.  自主火星探测高集成离子与中性粒子分析仪 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.005
    [5] 刘庆会.  火星探测VLBI测定轨技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.005
    [6] 耿言, 周继时, 李莎, 付中梁, 孟林智, 刘建军, 王海鹏.  我国首次火星探测任务 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.001
    [7] MARIANIMJ, DIRUSCIOA, NOTAROV, IESSL.  一种新型多普勒噪声抑制技术对BepiColombo任务无线电科学实验的性能提升 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.02.002
    [8] 舒嵘, 徐卫明, 付中梁, 万雄, 袁汝俊.  深空探测中的激光诱导击穿光谱探测仪 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.007
    [9] 詹亚锋, 解得准.  BCH(63,56)性能分析及仿真 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.04.012
    [10] 李建军, 王大轶.  摄动因素对火星环绕段轨道长期影响研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.01.012
    [11] 彭松, 贾阳, 陈百超.  火星车绝对定位方法选择 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.007
    [12] 党兆龙, 陈百超.  火星土壤物理力学特性分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.005
    [13] 于登云, 孙泽洲, 孟林智, 石东.  火星探测发展历程与未来展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.002
    [14] 汪梁, 赵方方, 陈翠桥, 徐照钱.  粒子过滤在自主天文导航系统中的性能评估和应用 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.03.008
    [15] 于正湜, 崔平远.  行星着陆自主导航与制导控制研究现状与趋势 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.006
    [16] 饶炜, 孙泽洲, 孟林智, 王闯, 吉龙.  火星着陆探测任务关键环节技术途径分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.004
    [17] 杨懿, 金双根, 薛岩松.  利用CRISM数据探测火星表面含水矿物及其演化 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.015
    [18] 孟林智, 董捷, 许映乔, 王硕.  无人火星取样返回任务关键环节分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.003
    [19] 秦同, 王硕, 高艾, 朱圣英, 崔平远.  一种火星大气密度三维解析模型 . 深空探测学报(中英文),
    [20] 徐青, 耿迅, 蓝朝祯, 邢帅.  火星地形测绘研究综述 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-17
  • 修回日期:  2020-07-20
  • 网络出版日期:  2020-09-24

火星车低密度纳米气凝胶隔热材料制备及性能研究

doi: 10.15982/j.issn.2096-9287.2020.20200036
    基金项目:  国家自然科学基金资助项目(51761145103);载人航天领域预先研究项目(030301)
    通讯作者: 艾素芬(1979– ),女,博士,研究员,主要研究方向:航天高性能防隔热材料。通讯地址:北京市5142信箱439分箱(100094)电话:(010)68114575 E-mail:sufenai529s@163.com
  • ● Silica aerogel composites with density as 30 kg/m3 were first prepared and applied in Mars Rover. ● The room temperature conductivity of low density aerogel composites was 0.006 6 W/(m·K)under the martial atmosphere. ● The properties and structure of low density aerogel composites were stable after the thermal cycling,thermal vacuum and other thermal environments experiments. ● The low density aerogel composite has been applied the Mars Rover in China.
  • 中图分类号: V19

摘要: 火星存在平均压力约600 Pa的CO2气体环境,以及最低温度约–123 ℃的温度环境,超轻质、高效隔热材料是火星车热控系统的关键性材料,保证内部电子元器件正常工作。气凝胶材料是目前大气环境下导热系数最低的固体材料,是火星车最佳的保温隔热材料方案。针对我国火星车应用需求,研制了密度小于30 kg/m3的低密度纳米气凝胶隔热材料,研究了低密度气凝胶的制备、复合材料的制备、超临界CO2干燥以及低密度气凝胶复合材料机加等制备过程,并表征了材料的热物理性能、真空挥发性以及热循环、热真空等空间热环境下的性能,表明低密度纳米气凝胶隔热材料在火星环境下具有良好的结构稳定性和隔热性能稳定性,可满足空间探测的应用需求。该材料具有良好的机加性能和优异的隔热性能,它的火星大气下室温导热系数为0.006 6 W/(m·K),实现了在我国火星车上的工程应用。

注释:
1)  ● Silica aerogel composites with density as 30 kg/m3 were first prepared and applied in Mars Rover. ● The room temperature conductivity of low density aerogel composites was 0.006 6 W/(m·K)under the martial atmosphere. ● The properties and structure of low density aerogel composites were stable after the thermal cycling,thermal vacuum and other thermal environments experiments. ● The low density aerogel composite has been applied the Mars Rover in China.

English Abstract

艾素芬, 向艳超, 雷尧飞, 薛淑艳, 沈宇新, 殷雷, 刘佳, 陈维强. 火星车低密度纳米气凝胶隔热材料制备及性能研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200036
引用本文: 艾素芬, 向艳超, 雷尧飞, 薛淑艳, 沈宇新, 殷雷, 刘佳, 陈维强. 火星车低密度纳米气凝胶隔热材料制备及性能研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2020.20200036
AI Sufen, XIANG Yanchao, LEI Yaofei, XUE Shuyan, SHEN Yuxin, YIN Lei, LIU Jia, CHEN Weiqiang. Preparation and Characterization of Ultra-low Density Nano-aerogel Insulation Materials for Mars Rover[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200036
Citation: AI Sufen, XIANG Yanchao, LEI Yaofei, XUE Shuyan, SHEN Yuxin, YIN Lei, LIU Jia, CHEN Weiqiang. Preparation and Characterization of Ultra-low Density Nano-aerogel Insulation Materials for Mars Rover[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2020.20200036
参考文献 (16)

返回顶部

目录

    /

    返回文章
    返回