Design of Image Compression Storage System and Key Algorithm for Mars Rover
-
摘要: 面向火星车的图像数据存储、压缩和传输任务进行分析,提出设计需求与关键设计特征,开展系统设计与关键软硬件架构、图像压缩核心算法与传输协议设计;设计并实现了火星车图像存储与压缩传输系统,其中实现了基于FPGA(Field Programmable Gate Array)的多相机分区并行图像文件系统、基于数据信号处理(Digital Signal Processing,DSP)实现了“自适应首1游程编码算法”,以及图像码流打包与控制软件;在型号研制中实现了多相机数据存储管理、图像压缩比灵活控制、质量渐进式传输、感兴趣区域(Region Of Interest,ROI)编码、抗误码扩散和图像缩略图生成下传等功能,满足我国首次火星探测任务可靠、高效、灵活的图像应用需求。Abstract: Focused on the image data storage, compression and transmission of mars rover, system design and key hardware/software architecture design are carried out in this paper based on the analysis of function requirements and key design features. Image compression algorithm and transmission protocol are proposed, and the image storage and compression module in Mars rover is designed and implemented. The multi-camera partition parallel image file system based on FPGA(Field Programmable Gate Array)is realized. The adaptive first 1 run length coding algorithm for image compression based on DSP is realized on this module. Finally the function of multi-camera image data storage and management, flexible control of image compression ratio, quality progressive transmission, coding of region of interest, anti-error code diffusion and image thumbnail downward transmission are realized in the engineering development, meeting the reliable, efficient and flexible application requirements of China’s first Mars exploration mission.
-
Key words:
- Mars rover /
- image compression /
- image storage /
- file system
Highlights● A parallel image file system based on FPGA with high speed,high reliability and high flexibility is designed,which adopts many measures such as data RS coding to resist error code. ● The adaptive first 1 run-length coding algorithm is used as the core algorithm,and the simple counting method is used to estimate the context probability,which increases the computational complexity slightly and improves the coding efficiency effectively. ● The functions of multi-camera data storage management,flexible control of image compression ratio,quality progressive transmission,Region Of Interest(ROI)coding,error resilience diffusion,image thumbnail generation and downloading are implemented. -
表 1 多相机数据管理需求
Table 1 Multi-camera data management demands
源设备 相机 压缩 原始图像参数 导航控制单元 导航地形相机 × 2 是 2048 × 2048 × 10 bit 前避障相机 × 2 是 1024 × 1024 × 8 bit 后避障相机 × 2 是 1024 × 1024 × 8 bit 载荷控制器 无(只传输非图像
载荷数据)/ / 多光谱相机 多光谱相机 × 1 是 2048 × 2048 × 10 bit 工参处理单元 开伞监视相机 × 2 否 / 落火监视相机 × 2 否 / 导航下降控制单元 多功能避障敏感器 × 1 是 2048 × 2048 × 8 bit 光学避障敏感器 × 1 是 2048 × 2048 × 8 bit WIFI单元 WIFI视频相机 否 / 表 2 图像存储分区地址分配表
Table 2 Image storage partition address allocation table
分区 种类 数据类型 分区块地址范围 容量 图像量 1 相机1 全色图像 0x0000~0x0FFF 512 MB 512幅 2 相机2 全色图像 0x1000~0x1FFF 512 MB 512幅 3 相机3 全色图像 0x2000~0x2FFF 512 MB 512幅 4 相机4 全色图像 0x3000~0x3FFF 512 MB 512幅 5 相机5 多波段图像 0x4000~0x4FFF 512 MB 16幅 6 相机6 多波段图像 0x5000~0x5FFF 512 MB 16幅 7 工程遥测 VCDU 0x6000~0xBFFF ≥ 5 GB 8 内部使用缓存1 0xC000~0xCFFF 512 MB 自用数据缓存 9 内部使用缓存2 0xD000~0xDFFF 512 MB 10 备用分区1 0xE000~0xEFFF 512 MB 备用分区 11 备用分区2 0xF000~0xFFFF 512 MB 表 3 最佳编码参数表
Table 3 Optimal encoding parameters table
区间 0值概率区间 Run_K K 1 [0~0.50) 10 0 2 [0.50~0.60) 10 0 3 [0.60~0.67) 1 0 4 [0.67~0.70) 1 1 5 [0.70~0.84) 0 1 6 [0.84~0.91) 0 2 7 [0.91~0.96) 0 3 8 [0.96~0.98) 0 4 9 [0.98~0.99) 0 5 10 [0.99~1) 0 6 表 4 XQR2V3000(-4)FPGA资源开销
Table 4 Resources utility in XQR2V3000(-4)FPGA
逻辑资源 Used/个 Available/个 Utilization/% Slice 3 832 14 336 26 4-LUT 6 821 28 672 23 FF寄存器 4 216 28 672 14 BRAMs 53 96 55 最高频率/MHz 66.878 表 5 无损压缩性能比较
Table 5 Performance of lossless image compression
bpp 算法 Adpt-F1Run F1Rrun CCSDS-IDC CCSDS-RICE JPEG2000 Lena 4.34 4.44 4.40 4.51 4.16 zelda 4.02 4.14 4.15 4.27 4.00 baboon 6.04 6.17 6.13 6.15 6.13 bar 7.19 7.33 7.16 6.93 7.13 Jet 3.80 3.96 3.90 3.97 3.75 office 3.48 3.52 3.44 3.59 3.27 平均 4.81 4.93 4.86 4.90 4.74 表 6 整数97小波有损压缩性能比较
Table 6 Performance in lossy compression by using Int97 DWT
码率/bpp 0.1 0.2 0.4 0.8 1 2 本文算法/dB 29.41 32.03 35.01 37.89 39.05 43.08 F1Rrun/dB 28.69 31.70 34.67 37.70 38.87 43.04 CCSDS-IDC/dB 27.16 31.58 34.59 37.53 38.32 42.55 SPIHT/dB 29.23 32.11 35.07 37.82 38.93 42.56 表 7 浮点97小波有损压缩性能比较
Table 7 Performance in lossy compression by using float-point97 DWT
码率/bpp 0.1 0.2 0.4 0.8 1 2 本文算法/dB 28.62 31.82 35.02 38.48 39.55 44.07 F1Rrun/dB 28.49 31.45 34.72 38.12 39.15 43.47 SPIHT/dB 29.32 32.25 35.48 38.71 39.85 44.29 JPEG2000/dB 29.68 32.82 36.07 39.24 40.35 44.77 -
[1] 徐欣锋. MERs深空在轨图像压缩技术研究[J]. 测试技术学报,2007,21(16):99-103.XU X F. MERs Deep-space imagery compression on-board[J]. Journal of Test and Measurement Technology,2007,21(16):99-103. [2] 孟庆宇,付中梁,董吉洪,等. 火星探测高分辨率可见光相机光学系统设计[J]. 深空探测学报(中英文),2018,5(5):458-464.MENG Q Y,FU Z L,DONG J H,et al. The optical system design of the high-resolution visible spectral camera for China Mars exploration[J]. Journal of Deep Space Exploration,2018,5(5):458-464. [3] 裴楠,李珂,赵蕾. 基于FPGA的速率自适应图像抽取算法[J]. 现代电子技术,2013,19:57-63. doi: 10.3969/j.issn.1004-373X.2013.20.018PEI N,LI K,ZHAO L. Rate adaptive image extraction method based on FPGA[J]. Modern Electronics Technique,2013,19:57-63. doi: 10.3969/j.issn.1004-373X.2013.20.018 [4] CCSDS. CCSDS732.0-p-2.1, AOS space data link protocol[S]. Washington D C: CCSDS, 2015. [5] 3D-Plus Co. Memory module flash nand 4Gx16 -SOP 3DFN64G16VS8477[EB/OL]. (2012-11-10)[2020-06-15].https://www.3d-plus.com/product.php?fam=8&prod=22. [6] XU Y, ZHAO L, LIU Z G, et al. Context based adaptive first 1 bit run-length image bit-plane coding algorithm[C]//2018 Eighth International Conference on Instrumentation and Measurement, Computer, Communication and Control. Harbin, China: [s. n.]: 2018. [7] 徐勇. 基于首1游程的图像位面并行编码算法[J]. 光学精密工程,2015,23(3):864-870.XU Y. Bit-plane paralleled image coding algorithm based on run-length coding of first 1 bit[J]. Optics and Precision Engineering,2015,23(3):864-870. [8] 吴乐南. 数据压缩: 第2版 [M]. 北京: 电子工业出版社, 2005.WU L N. Data compression: 2nd ed. [M]. Beijing: Publishing House of Electronics Industry, 2005. [9] CCSDS.CCSDS120.1-G-1, Image data compression. report concerning space data system standards[S]. Washington, DC: CCSDS, 2007. [10] TAUBMAN D S, MARCELLIN M W. JPEG2000 image compression fundamentals, standards and practice[M]. Dordrecht, Holland: Kluwer Academic Publishers, 2001. [11] CORSONELLO P,STEFANIA P,PAOLO Z. Microprocessor-based FPGA implementation of SPIHT image compression subsystems[J]. Microprocessors and Microsystems,2005,29(6):299-305. doi: 10.1016/j.micpro.2004.08.013 -
计量
- 文章访问数: 22
- 被引次数: 0