Dynamics Modeling and Simulation Analysis of Mars Rover System
-
摘要: 针对火星地形环境地面无法真实模拟,火星车功能性能地面验证不充分,尤其针对中国火星车采用主动悬架式移动系统,缺乏在轨使用经验的问题,建立了真实的火星车系统动力学模型。通过数学仿真手段对火星车不同地形下移动性能与策略进行了全面验证,仿真结果表明:通过车体升降和抬轮行走可有效提升火星车通过性能及故障容错能力,给出了地形环境、行走步态等对火星车性能的量化影响,结果可为中国火星车在轨应用以及故障处置提供参考。Abstract: In view of the fact that the Martian terrain environment cannot be realistically simulated on the ground, the functional performance of the rover is not fully verified on the ground, especially the Chinese rover adopts an active suspension mobile system, lacks experience in orbit. Establish a real dynamics model of the rover system, and comprehensively verify the rover's movement performance and strategy under different terrains through mathematical simulation methods. the simulation results show that the vehicle body lifting and wheel-lifting walking can effectively improve the passing performance and fault tolerance of the rover. Give the quantitative influence of terrain environment and walking gait on the performance of the rover, provide reference for Chinese Mars rover application in orbit and troubleshooting.
-
Key words:
- Mars rover /
- active suspension /
- dynamics modeling /
- performance verification
Highlights● The terrain environment of Mars is complex. ● Passive suspension Mars rover is easy to sink and difficult to climb;Active suspension Mars rover has the functions of wheel-lifting walking and peristaltic walking. ● Improve the trafficability of complex terrain environment. ● The surface environment of Mars cannot be simulated accurately. ● It is verified by simulation,provide reference for Chinese Mars rover application in orbit and troubleshooting. -
表 1 柔性件模态
Table 1 Flexible part mode
结构名称 模态频率/Hz 主摇臂长臂 281.8/518.7 主摇臂短臂 831.7/841.6 副摇臂 736.8/759.0 表 2 车轮法向力
Table 2 Normal force of wheel
工况 法向力/N ${F_{{\simfont\text{左前}}}}$ ${F_{{\simfont\text{左中}}}}$ ${F_{{\simfont\text{左后}}}}$ ${F_{{\simfont\text{右前}}}}$ ${F_{{\simfont\text{右中}}}}$ ${F_{{\simfont\text{右后}}}}$ 水平面 159 146 142 159 146 142 前向坡 60 79 252 60 79 252 后向坡 250 112 27 250 112 27 越障 238 320 208 238 320 208 过坑 231 401 209 231 401 209 最大值 250 401 252 250 401 252 表 3 车轮驱动力矩
Table 3 Drive force of wheel
工况 驱动力矩/(Nm) ${T_{{\simfont\text{左前}}}}$ ${T_{{\simfont\text{左中}}}}$ ${T_{{\simfont\text{左后}}}}$ ${T_{{\simfont\text{右前}}}}$ ${T_{{\simfont\text{右中}}}}$ ${T_{{\simfont\text{右后}}}}$ 前向坡 6 10 17 6 10 17 后向坡 18 13 3 18 13 3 越障 40 50 30 40 50 30 过坑 34 59 31 34 59 31 最大值 40 59 31 40 59 31 表 4 夹角调整机构驱动力矩
Table 4 Drive force of angle adjustment mechanism
工况划分 主摇臂力矩/(Nm) ${T_{{\simfont\text{左长}}}}$ ${T_{{\simfont\text{左短}}}}$ ${T_{{\simfont\text{右长}}}}$ ${T_{{\simfont\text{右短}}}}$ 水平地面 下降至压紧 115 96 115 96 抬升至极限 144 120 144 120 前向坡 下降至压紧 63 123 63 123 抬升至极限 78 139 78 139 后向坡 下降至压紧 136 44 136 44 抬升至极限 149 53 149 53 侧向坡 下降至压紧 43 26 158 143 抬升至极限 59 43 225 205 表 5 夹角调整机构驱动力矩
Table 5 Drive force of angle adjustment mechanism
工况划分 主摇臂力矩/(Nm) ${T_{{\simfont\text{左长}}}}$ ${T_{{\simfont\text{左短}}}}$ ${T_{{\simfont\text{右长}}}}$ ${T_{{\simfont\text{右短}}}}$ 单前轮抬升行走 113 98 113 97 双前轮抬升行走 114 99 114 99 单中轮抬升行走 106 82 217 192 双中轮抬升行走 204 163 204 163 单后轮抬升行走 116 110 75 48 双后轮抬升行走 75 46 75 46 -
[1] BASILEVSKY A T,KRESLAVSKY M A,KARACHEVTSEVA L P. Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas[J]. Planetary and Space Science,2014(92):77-87. [2] GROTZINGER J P. Mars Science Laboratory mission and science investigation[J]. Space Science Reviews,2012,170(1-4):5-56. [3] 邓宗全,范雪兵,高海波,等. 载人月球车移动系统综述及关键技术分析[J]. 宇航学报,2012,33:675-689. doi: 10.3873/j.issn.1000-1328.2012.06.001DENG Z Q,FAN X B,GAO H B,et al. Review and key techniques for locomotive system of manned lunar rovers[J]. Journal of Astronautics,2012,33:675-689. doi: 10.3873/j.issn.1000-1328.2012.06.001 [4] 王琼,贾阳,陶灼,等. 火星移动智能体技术探讨[J]. 航天器工程,2015,24(4):27-32. doi: 10.3969/j.issn.1673-8748.2015.04.005WANG Q,JIA Y,TAO Z,et al. Discuss on Mars mobile agent technologies[J]. Spacecraft Engineering,2015,24(4):27-32. doi: 10.3969/j.issn.1673-8748.2015.04.005 [5] 于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报(中英文), 2016, 3(2): 108-113.YU D Y, SUN Z Z, MENG L Z, et al. The development process and prospects for Mars exploration [J]. Journal of Deep Space Exploration, 2016, 3(2): 108-113. [6] SUN Z Z,JIA Y,ZHANG H. Technological advancements promotion roles of Chang’e-3 lunar probe mission[J]. Technological Sciences,2013,56(11):2702. [7] 陈百超. 月球车悬架研究及动力学仿真[D]. 长春: 吉林大学, 2006.CHEN B C. Lunar rover suspension research and dynamic simulation[D]. ChangChun: Jilin University, 2006. [8] 高海波,郑军强,刘振,等. 主动悬架式火星车车轮抬离地面性能分析[J]. 机器人,2017,39(2):139-150.GAO H B,ZHENG J Q,LIU Z,et al. Performance analysis on wheels lifting-off-ground for Mars rover with active suspension[J]. Robot,2017,39(2):139-150. [9] 陶灼,陈百超,贾阳. 火星车主动悬架的几何参数优化[J]. 航天器工程,2016,25(6):48-54. doi: 10.3969/j.issn.1673-8748.2016.06.008TAO Z,CHEN B C,JIA Y. Optimization of geometric parameters for martian rover active suspension[J]. Spacecraft Engineering,2016,25(6):48-54. doi: 10.3969/j.issn.1673-8748.2016.06.008 [10] 郑军强. 六轮摇臂式火星车轮–步复合移动系统及蠕动爬行策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.ZHENG J Q. Study on derivative-free algorithms in the air-to-sea single observer passive tracking application[D]. Harbin: Harbin Institute of Technology, 2019. [11] 唐玲,刘涛,李德伦,等. 一种主动悬架式火星车稳定裕度优化控制策略[J]. 宇航学报,2019,11:1348-1357.TANG L,LIU T,LI D L,et al. An optimal control strategy for stability margin of a Mars rover with active suspension[J]. Journal of Astronautics,2019,11:1348-1357. [12] 丁亮. 月/星球车轮地作用地面力学模型及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.DING L. Wheel-soil interaction terramechanics for lunar/planetary exploration rovers: modeling and application[D]. Harbin: Harbin Institute of Technology, 2009. [13] 杜建军,任明俊,刘暾,等. 非对称行星探测车行走系统的动力学仿真及运动性能分析[J]. 机器人,2011,33(1):1-8.DU J J,REN M J,LIU D,et al. Dynamics simulation and motion capability analysis on the mobile systm for asymmetric planetary rover[J]. Robot,2011,33(1):1-8. -
计量
- 文章访问数: 17
- 被引次数: 0