The High Precise Positioning Reduction Based on VLBI
-
摘要: 基于甚长基线干涉测量技术(Very Long Base Interferometer,VLBI)的时延、时延率以及USB(United S-band)/UXB(United X-band)的测距特点,采用联合统计定位及月面高程约束策略,实现了高精度的探测器的实时单点定位和准实时联合统计定位,且实时单点定位不受力学约束能够快速准确地给出三维位置信息,最终实现在轨控弧段和探测器被月球捕获阶段的轨道根数的实时监测。在“嫦娥3号”月面着陆器定位中,获得月面位置好于100 m的外符合精度。在特殊的轨道阶段,采用△DOR差分技术,VLBI探测器近月捕获制动及“嫦娥4号”中继星变轨进入地月L2平动点的Halo轨道等特殊阶段,实时快速地给出6个瞬时轨道根数,为工程提供重要参考。Abstract: Based on the delay and delay rate data from Very Long Baseline Interferometry(VLBI) and range and Doppler data from United S or X band system, the precise point positioning in real-time mode is got and the lunar lander or rover in quasi- real time mode with joint statistical method is obtained. With the precise point positioning method, free of various mechanical constraint, the three-dimensioned position information in real-time can be obtained. In special orbit maneuvering period such as braking at perilune and CE-4 relay satellite entering the Halo orbit at the Lagrangian translation point L2 of Earth-lunar system, the six-orbit elements at real time can be obtained as well, offering a rapid reference for the project. Using the joint statistical method and lunar height constraint, the position of CE-3 lander arrives at 100- meter external coincidence accuracy. With VLBI Same Beam Interferometry(SBI) phase-delay measurements, the external coincidence accuracy of the CE-3 rover reached at 1- meter level. It will promote more positioning analysis in the future deep space exploration projects.
-
Key words:
- positioning reduction /
- VLBI /
- real-time monitoring
Highlights● In special orbit maneuvering period such as braking at perilune and CE-4 relay satellite entering the Halo orbit at the Lagrangian translation point L2 of Earth-lunar system, the six-orbit elements can be got at real time as well,offering a rapid reference for the project. ● Using the joint statistical method and lunar height constraint,the position of CE-3 lander reaches at 100 m external coincidence accuracy. ● With VLBI Same Beam Interferometry(SBI) phase-delay measurements, the external coincidence accuracy of the CE-3 rover reaches at 1- meter level. ● With the precise point positioning method,free of various mechanical constraint, the three-dimensioned position information can be got in real-time,with the advantage of rapid respond and high accuracy, providing the important reference for the project. -
表 1 CE-4中继星近月捕获期间的偏心率变化
Table 1 Eccentricity changes of CE-4 relay satellite during the baking at perilune
时间(h:m:s) 偏心率 时间(h:m:s) 偏心率 13:32:05 1.303 13:41:05 1.087 13:33:05 1.288 13:42:05 1.066 13:34:05 1.310 13:43:05 1.046 13:35:05 1.224 13:44:05 1.025 13:36:05 1.201 13:45:05 1.037 13:37:05 1.176 13:46:05 0.996 13:38:05 1.151 13:47:05 0.971 13:39:05 1.130 13:48:05 0.966 13:40:05 1.108 13:49:05 0.966 -
[1] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展,2004,19(3):355-357.OUYANG Z Y. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advance in Earth Sciences,2004,19(3):355-357. [2] 董光亮,李海涛,郝万宏,等. 中国深空测控系统建设与技术发展[J]. 深空探测学报(中英文),2018,5(2):99-114.DONG G L,LI H T,HAO W H,et al. Development and future of China’s deep space TT&C system[J]. Journal of Deep Space Exploration,2018,5(2):99-114. [3] 洪晓瑜,张秀忠,郑为民,等. 基于VLBI技术研究及在中国探月工程的应用[J]. 深空探测学报(中英文),2020,7(4):1-10.HONG X Y,ZHANG X Z,ZHENG W M,et al. The research of VLBI technology and application in China lunar exploration project[J]. Journal of Deep Space Exploration,2020,7(4):1-10. [4] LI J L,GUO L,QIAN Z H,et al. The application of the instantaneous states reduction to the orbital monitoring of pivotal arcs of the Chang’E-1 satellite[J]. Science in China (Series G:Physics,Mechanics & Astronomy),2009,52(12):1833-1841. [5] 郭丽. 基于VLBI跟踪观测的空间飞行器瞬时状态参量归算[D]. 上海: 中国科学院研究生院(上海天文台), 2007.GUO L. Reduction of instantaneous state parameters of spacecraft based on VLBI tracking observation[D]. Shanghai: Graduate School of Chinese Academy of Sciences(Shanghai Astronomical Observatory), 2007. [6] 李金岭,刘鹂,郑为民,等. 定位归算在嫦娥二号任务实时阶段的应用[J]. 中国科学:物理学力学文学,2011,41(7):889-895.LI J L,LIU L,ZHENG W M,et al. Application of positioning reduction in real-time phase of Chang'e 2 mission[J]. Science China:Physical Mechanics & Astronomy,2011,41(7):889-895. [7] 高珊,周文艳,梁伟光,等. 地月拉格朗日L2点中继星轨道分析与设计[J]. 深空探测学报(中英文),2017,4(2):122-129.GAO S,ZHOU W Y,LIANG W G,et al. Orbital analysis and design of Earth Moon Lagrange L2 relay satellite orbit[J]. Journal of Deep Space Exploration,2017,4(2):122-129. [8] 孙超,唐玉华,李翔宇,等. 地−月L2点中继星月球近旁转移轨道设计[J]. 深空探测学报(中英文),2017,4(3):264-269,275.SUN C,TANG Y H,LI X Y,et al. Design of lunar near-side transfer orbit for Earth-Moon L2 relay satellite[J]. Journal of Deep Space Exploration,2017,4(3):264-269,275. [9] RICHARDSON D L. Analytical construction of periodic orbits about the collinear points[J]. Celestial Mechanics,1980,22:241-253. [10] 张宇,郭丽,王广利,等. 定位归算在嫦娥四号中继星变轨阶段的应用[J]. 武汉大学学报(信息科学版),2020,45(2):189-95.ZHANG Y,GUO L,WANG G L,et al. The application of positioning reduction in the orbital transfer stage of the Chang’E-4 relay satellite[J]. Geomatics and Information Science of Wuhan University,2020,45(2):189-95. [11] 曹建峰,张宇,胡松杰,等. 嫦娥三号着陆器定位与精度分析[J]. 武汉大学学报(信息科学版),2016,41(2):274-277.CAO J F,ZHANG Y,HU S J,et al. An analysis of precise positioning and accuracy of the CE-3 lunar lander soft landing[J]. Geomatics and Information Science of Wuhan University,2016,41(2):274-277. [12] 郭丽,李金岭,童锋贤,等. 同波束VLBI技术对嫦娥三号巡视器的高精度相对定位[J]. 武汉大学学报(信息科学版),2016,41(8):1126.GUO L,LI J L,TONG F X,et al. Precisely relative positioning of Chang’E-3 rover with SBI delta VLBI delay measurements[J]. Geomatics and Information Science of Wuhan University,2016,41(8):1126. [13] DUEV D A,MOLERA C G,POGREBENKO S V,et al. Spacecraft VLBI and Doppler tracking:algorithms and implementation[J]. Astronomy & Astrophysics / Astronomie et Astrophysique,2012,541(A43):1-9. [14] 黄勇,昌胜骐,李培佳,等. “嫦娥三号”月球探测器的轨道确定和月面定位[J]. 科学通报,2014,59(23):2268-2277.HUANG Y,CHANG S Q,LI P J,et al. Orbit determination of Chang’E-3 and positioning of the lander and rover[J]. Chinese Science Bull,2014,59(23):2268-2277. -
计量
- 文章访问数: 28
- 被引次数: 0