中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽范围输入输出离子电推进屏栅电源的设计

陈昶文 武荣

陈昶文, 武荣. 宽范围输入输出离子电推进屏栅电源的设计[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200051
引用本文: 陈昶文, 武荣. 宽范围输入输出离子电推进屏栅电源的设计[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200051
CHEN Changwen, WU Rong. Design of Wide Range Input and Output Beam Power Supply for Ion Electric Propulsion[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200051
Citation: CHEN Changwen, WU Rong. Design of Wide Range Input and Output Beam Power Supply for Ion Electric Propulsion[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200051

宽范围输入输出离子电推进屏栅电源的设计

doi: 10.15982/j.issn.2095-7777.2020.20200051
详细信息
    作者简介:

    陈昶文(1991– ),男,工程师,主要研究方向:航天器二次电源及电推进电源处理单元。通讯地址:兰州市飞雁街100号二次电源事业部(730000)电话:(0931)4585313 E-mail:xbwenwen@qq.com

  • · The technical difficulties of ion electric propulsion Beam power supply for deep space detector are analyzed. · The shortcomings of traditional single-stage converter in wide range input and output design are compared and analyzed. · A kind of optimal design scheme of Buck / boost + full bridge combination design is given.
  • 中图分类号: V11

Design of Wide Range Input and Output Beam Power Supply for Ion Electric Propulsion

  • 摘要: 深空探测器离子电推进系统电源处理单元(Power Processing Unit,PPU)需要适应宽范围电压输入、宽范围电压输出和宽范围功率输出,造成PPU的元器件应力增加、体积重量增加和效率降低。本文针对我国小天体探测器离子电推进PPU中核心模块屏栅电源输入电压60~110 V、输出电压420~1 260 V、输出电流0.3~2.1 A的指标需求,从功率模块分解、软开关拓扑选择、单级功率变换器拓扑设计和两级功率变换器拓扑设计方面研究了屏栅电源的设计,提出了在效率、体积和可靠性方面综合优化的方案,对屏栅单个功率模块的设计开展了实物验证。得出:采用优化的模块分解,将输出电压固定,能有效降低元器件应力、优化变换器工作点效率以及提高变换器的可靠性;移相全桥和全桥LLC在设计宽范围输入变换器时存在半导体功率元器件应力高、电容应力高和磁性元器件加工困难等问题;采用BUCK/BOOST + 全桥LLC的两级拓扑方案,能简化高压整流电路的应力,同时适应宽范围输入电压,是宽范围输入输出屏栅电源优选的方案。
    Highlights
    · The technical difficulties of ion electric propulsion Beam power supply for deep space detector are analyzed. · The shortcomings of traditional single-stage converter in wide range input and output design are compared and analyzed. · A kind of optimal design scheme of Buck / boost + full bridge combination design is given.
  • 图  1  “隼鸟号”PPU屏栅电源方案

    Fig.  1  Beam power supply scheme of Hayabusa PPU

    图  2  “黎明号”PPU屏栅电源方案

    Fig.  2  Beam power supply scheme of Dawn PPU

    图  3  屏栅电源功率容量设计

    Fig.  3  power capacity design of beam power supply

    图  4  采用两个模块设计屏栅电源时输出电压需要可调节输出

    Fig.  4  the output voltage needs to be adjustable when two modules are used to design the beam power supply

    图  5  3个屏栅电源模块方案,可以设计为2个固定模块和一个可调节的模块

    Fig.  5  three beam power supply modules can be designed as two fixed modules and a two-stage adjustment module

    图  6  屏栅电源移相全桥变换方案原理示意图

    Fig.  6  schematic diagram of beam power supply phase shifting full bridge transformation scheme

    图  7  全桥LLC变换器原理图

    Fig.  7  Schematic diagram of full bridge LLC converter

    图  8  全桥LLC变换器仿真结果

    Fig.  8  simulation results of full bridge LLC converter

    图  9  BUCK + 全桥原理图

    Fig.  9  schematic diagram of Buck + full bridge topology

    图  10  880 W BUCK + 全桥屏栅电源仿真结果

    Fig.  10  simulation results of 880 W buck + full bridge beam power supply

    图  11  BOOST + 全桥方案原理图

    Fig.  11  schematic diagram of boost + full bridge scheme

    图  12  880 W BOOST + 全桥屏栅变换器仿真结果

    Fig.  12  simulation results of 880 W boost + full bridge beam power supply

    图  13  屏栅电源原理框图

    Fig.  13  schematic diagram of beam power supply

    图  14  BUCK + 全桥变换器工作波形(BUCK输出58 V,全桥输出420 V/2.1 A)

    Fig.  14  working waveform of Buck + full bridge converter (buck output 58 V,full bridge output 420 V/2.1 A)

    图  15  BOOST + 全桥变换器工作波形(BOOST输出110 V,全桥输出420 V/2.1 A)

    Fig.  15  working waveform of boost + full bridge converter (boost output 110 V,full bridge output 420 V/2.1 A)

    图  16  1 kW BOOST + 全桥LLC和BUCK + 全桥效率曲线对比

    Fig.  16  comparison of efficiency curves of 1 kW boost + full bridge LLC and buck + full bridge

    表  1  BUCK + 全桥设计的315~630 V输出模块的主要参数

    Table  1  main parameters of 315~630 V output module for Buck + full bridge design

    参数数值
    BUCK工作频率/kHz100
    BUCK电感电流平均值/A24
    BUCK电感电流峰值/A28.5
    BUCK电感值/uH30
    全桥初级电流有效值/A28.3
    全桥初级电流峰值/A40.0
    下载: 导出CSV

    表  2  880 W BUCK + 全桥屏栅模块设计参数

    Table  2  design parameters of 880 W buck + full bridge grid module

    参数
    BUCK工作频率/kHz100
    BUCK电感/uH40
    BUCK电感电流均值/A15.8
    BUCK电感电流峰峰值/ A6.8
    全桥变压器匝比/1:7.3
    全桥谐振电容/ uF1.36
    全桥谐振电感/ uH1.86
    全桥工作频率/ kHz100
    全桥初级电流有效值/ A18.9
    下载: 导出CSV

    表  3  880 W BOOST + 全桥屏栅模块设计参数

    Table  3  design parameters of 880 W boost + full bridge grid module

    参数
    BOOST工作频率/kHz100
    BOOST电感/uH40
    BOOST电感电流均值/A16
    BOOST电感电流峰峰值/A6.8
    全桥变压器匝比1:3.9
    全桥谐振电容/uF0.66
    全桥谐振电感/uH3.83
    全桥工作频率/kHz100
    全桥初级电流有效值/A10.0
    下载: 导出CSV
  • [1] 叶培建,彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学,2006,8(10):13-18. doi:  10.3969/j.issn.1009-1742.2006.10.003

    YE P J,PENG J. Deep space exploration and its prospect in china[J]. Engineering Science,2006,8(10):13-18. doi:  10.3969/j.issn.1009-1742.2006.10.003
    [2] 雷英俊,朱立颖,张文佳. 我国深空探测任务电源系统发展需求[J]. 深空探测学报,2020,7(1):35-40,46.

    LEI Y J,ZHU L Y,ZHANG W J. Research on power system development of Chinese deep space exploration[J]. Journal of Deep Space Exploration,2020,7(1):35-40,46.
    [3] 汤海滨, 刘宇. 深空探测主推进——电推进选择及其关键技术[C]//2002年深空探测技术与应用科学国际会议论文集. 北京: 中国宇航学会, 中国科学院, 2002.
    [4] 杭观荣,康小录. 电推进在深空探测主推进中的应用及发展趋势[J]. 火箭推进,2012,38(4):1-8,48. doi:  10.3969/j.issn.1672-9374.2012.04.001

    HANG R G,KANG X L. Application and development trends of electric propulsion in deep-space primary propulsion[J]. Journal of Rocket Propulsion,2012,38(4):1-8,48. doi:  10.3969/j.issn.1672-9374.2012.04.001
    [5] 牛厂磊,罗志福,雷英俊,等. 深空探测先进电源技术综述[J]. 深空探测学报,2020,7(1):24-34.

    NIU C L,LUO Z F,LEI Y J,et al. Advanced power source technology of deep space exploration[J]. Journal of Deep Space Exploration,2020,7(1):24-34.
    [6] 王文强,杨洪东,杨广,等. 太阳电池阵深空探测适应性设计概论[J]. 深空探测学报,2020,7(1):41-46.

    WANG W Q,YANG H D,YANG G,et al. Solar cell array design for deep space exploration missons[J]. Journal of Deep Space Exploration,2020,7(1):41-46.
    [7] 李宗良,高俊,刘国西,等. 小行星探测电推进系统方案研究[J]. 深空探测学报,2018,5(4):347-353.

    LI Z L,GAO J,LIU G X,et al. Study on the electric propulsion system for asteroid detection[J]. Journal of Deep Space Exploration,2018,5(4):347-353.
    [8] 杨福全,赵以德,李娟,等. 主带小行星采样返回任务中的离子电推进应用方案[J]. 深空探测报,2015(2):168-173.

    YANG F Q,ZHAO Y D,LI J,et al. Application scheme of ion electric propulsion system for main-belt asteroid sample and return mission[J]. Journal of Deep Space Exploration,2015(2):168-173.
    [9] 孙小菁,张兴民,田立成,等. 小行星探测及采样返回任务电推进系统方案设计[J]. 真空,2018,55(1):40-45.

    SUN X J,ZHANG X M,TIAN L C,et al. Scheme design of electric propulsion system for asteroid sample and return mission[J]. Vacuum,2018,55(1):40-45.
    [10] 郑茂繁,耿海,梁凯,等. 用于小行星探测的离子推力器技术研究[J]. 深空探测学报,2015(3):236-240.

    ZHENG M F,GENG H,LIANG K,et al. Research on ion thruster technology for asteroid exploration[J]. Journal of Deep Space Exploration,2015(3):236-240.
    [11] 赵以德,张天平,黄永杰,等. 40 cm离子推力器功率宽范围工作实验研究[J]. 推进技术,2018,39(4):942-947.

    ZHAO Y D,ZHANG T P,HUANG Y J,et al. Experimental study of 40 cm ion thruster over a wide range of input power[J]. Journal of Propulsion Technology,2018,39(4):942-947.
    [12] 朱立颖,刘治钢,张晓峰. 国外小天体探测器电源系统设计分析[J]. 航天器工程,2018,27(1):130-136. doi:  10.3969/j.issn.1673-8748.2018.01.018

    ZHU L Y,LIU Z G,ZHANG X F. Analysis on power system design of probe for small celestial body[J]. Spacecraft Engineering,2018,27(1):130-136. doi:  10.3969/j.issn.1673-8748.2018.01.018
    [13] GOLLOR M, BOSS M, HERTY F, et al. Generic high voltage power supplies (HVPS) with optimum efficiency and multi-range[C]// IEPC-2007-20.
    [14] PINTÓ F, PALENCIA J. Airbus defence and space power processing units: new HET and GIT PPU developments qualification status[C]// IEPC-2017-266.
    [15] BOURGUIGNON E, FRASELLE S, SCALAIS T, et al. Defise. Power processing unit activities at Thales Alenia Space Belgium (ETCA)[C]// IEPC-2015-224.
    [16] KOMURASAKI K. Overview of electric propulsion activities in Japan[C]// AIAA-2007-5166
    [17] KUNINAKA H, PAKHOMOV A V. Microwave discharge ion engines onboard Hayabusa asteroid explorer[J]. 2008, 997: 572-581.
    [18] KUNINAKA H,FINK W,KAWAGUCHI J. Deep space flight of Hayabusa asteroid explorer[J]. Proceedings of SPIE - The International Society for Optical Engineering,2008,6960:696002.
    [19] NAKAYAMA Y,FUNAKI I,KUNINAKA H,et al. Experimental evaluation of miniaturized ion thruster with microwave discharge[J]. Journal of the Japan Society for Aeronautical & Spaceences,2005,53(621):461-466.
    [20] kenichika h, osuga h, terukina I, et al. Development status of high voltage power supply for a 20 mN class ion thruster: IEPC-2011-183[R]. [S.l.]: IEPC, 2011.
    [21] POLK J, KAKUDA R, ANDERSON J, et al. Validation of the NSTAR ion propulsion system on the Deep Space Onse mission - overview and initial results[C]// Joint Propulsion Conference & Exhibit. 1999.
    [22] RAWLIN V, SOVEY J, HAMLEY J, et al. An ion propulsion system for NASA's Deep Space missions[C]// Space Technology Conference & Exposition. 2013.
    [23] BOND T A, BENSON G, CARDWELL G I, et al. NSTAR Ion engine power processor unit performance: ground test and flight experience[C]//Aerospace Power Systems Conference. 1999.
    [24] BROPHY J. The Dawn ion propulsion system[J]. Space Science Reviews,2011,163(1-4):251-261. doi:  10.1007/s11214-011-9848-y
    [25] John R. Brophy, Michael G. Marcucci, Gani B. Ganapathi, et al. The ion propulsion system For Dawn[C]//AIAA-2003-4542.
    [26] 阮新波. 脉宽调制DC/DC全桥变换器的软开关技术[M]. 北京: 科学出版社, 2013.
    [27] YANG B, LEE F C, ZHANG A J, et al. LLC resonant converter for front end DC/DC conversion[C]// APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition. [S.l.]: IEEE, 2002.
    [28] SONG T T,HUANG N C,IOINOVICI A. A family of Zero-Voltage and Zero-Current-Switching (ZVZCS) three-level DC–DC converters with secondary-assisted regenerative passive snubber[J]. IEEE Transactions on Circuits and Systems,2005,52:2473-2481. doi:  10.1109/TCSI.2005.853911
    [29] Kim E S,KimY H. A ZVZCS PWM FB DC/DC converter using a modified energy-recovery snubber[J]. IEEE Transactions on Industrial Electronics,2002,49:1120-1127. doi:  10.1109/TIE.2002.803237
    [30] CHO J G,BAEK J W,JEONG C Y,et al. Novel zero-voltage and zero-current-switching full-bridge PWM converter using a simple auxiliary circuit[J]. IEEE Transactions on Industrial Electronics,1999,35:15-20.
    [31] CHOI H S. Design consideration of half-bridge LLC resonant converter[J]. Journal of power electronics,2007,7(1):13-20.
    [32] 吴中民,刘威,吕征宇. LLC全范围满载软开关优化设计[J]. 浙江大学学报(工学版),2014,48(12):2223-2229.

    WU Z M,LIU W,LV Z Y. Optimal design of zero voltage switch of LLC in full range and full load[J]. Journal of Zhejiang University (Engineering Science),2014,48(12):2223-2229.
    [33] 钟运平,程小华,张勇,等. 半桥LLC谐振变换器参数优化设计[J]. 磁性材料及器件,2014(2):53-57. doi:  10.3969/j.issn.1001-3830.2014.02.013

    ZHONG Y P,CHENG X H,ZHANG Y,et al. Optimal design of parameters of half-bridge LLC resonant converter[J]. Journal of Magnetic Materials and Devices,2014(2):53-57. doi:  10.3969/j.issn.1001-3830.2014.02.013
  • [1] 于登云, 张哲, 泮斌峰, 刘传凯, 丁亮, 朱继宏, 高海波, 刘金国, 陈鹏.  深空探测人工智能技术研究与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190916001
    [2] 胡文军, 刘继忠, 唐玉华, 陈军红, 张玮, 张哲, 李上明, 胡绍全.  空间同位素热/电源安全性技术指标体系框架研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190911001
    [3] 雷英俊, 朱立颖, 张文佳.  我国深空探测任务电源系统发展需求 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190712001
    [4] 牛厂磊, 罗志福, 雷英俊, 王文强, 郑见杰, 乔学荣, 罗洪义, 胡文军, 钟武烨.  深空探测先进电源技术综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20200002
    [5] 叶培建, 孟林智, 马继楠, 王强, 李莹, 杜宇, 王硕.  深空探测人工智能技术应用及发展建议 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.001
    [6] 蔡明辉, 杨涛, 韩建伟.  载人深空探测磁场主动辐射防护技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.008
    [7] 陈莉丹, 谢剑锋, 刘勇, 陈明.  中国深空探测任务轨道控制技术综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.03.002
    [8] 路伟涛, 任天鹏, 陈略, 韩松涛, 王美.  一种基于小波相关滤波的无线电干涉测量处理方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.012
    [9] 路伟涛, 谢剑锋, 任天鹏, 韩松涛.  一种基于探测器下行信号融合处理的无线电干涉测量方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.03.004
    [10] 李永, 丁凤林, 周成.  深空探测推进技术发展趋势 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.04.002
    [11] 张国万, 李嘉华.  冷原子干涉技术原理及其在深空探测中的应用展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.01.002
    [12] 安然, 王敏, 梁新刚.  基于不变流形的地-月L2点转移轨道优化设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.03.008
    [13] 王彦龙, 杨浩, 李兴达, 江豪成, 张天平.  5 kW环型离子推力器试验研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.03.005
    [14] 杜建华, 赵兰, 王立伟, 王彬磊, 周世安, 王均, 马皓.  1.5 kW级磁聚焦霍尔推力器阳极电源设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.03.009
    [15] 张建琴, 徐建明, 贾巍, 邱宝贵, 肖杰.  深空探测太阳电池阵应用及关键技术分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.001
    [16] 刘庆会, 吴亚军.  高精度VLBI技术在深空探测中的应用 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.03.003
    [17] 王伟, 马彦涵, 周易倩, 方宝东.  深空探测磁动力技术研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.03.002
    [18] 刘宇鑫, 尚海滨, 王帅.  地球静止轨道卫星电推进位保策略研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.012
    [19] 张大鹏, 雷勇军.  深空探测返回舱着陆冲击动力学分析 . 深空探测学报(中英文),
    [20] 吴伟仁, 于登云.  深空探测发展与未来关键技术 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-01
  • 修回日期:  2020-08-20
  • 网络出版日期:  2020-09-14

宽范围输入输出离子电推进屏栅电源的设计

doi: 10.15982/j.issn.2095-7777.2020.20200051
    作者简介:

    陈昶文(1991– ),男,工程师,主要研究方向:航天器二次电源及电推进电源处理单元。通讯地址:兰州市飞雁街100号二次电源事业部(730000)电话:(0931)4585313 E-mail:xbwenwen@qq.com

  • · The technical difficulties of ion electric propulsion Beam power supply for deep space detector are analyzed. · The shortcomings of traditional single-stage converter in wide range input and output design are compared and analyzed. · A kind of optimal design scheme of Buck / boost + full bridge combination design is given.
  • 中图分类号: V11

摘要: 深空探测器离子电推进系统电源处理单元(Power Processing Unit,PPU)需要适应宽范围电压输入、宽范围电压输出和宽范围功率输出,造成PPU的元器件应力增加、体积重量增加和效率降低。本文针对我国小天体探测器离子电推进PPU中核心模块屏栅电源输入电压60~110 V、输出电压420~1 260 V、输出电流0.3~2.1 A的指标需求,从功率模块分解、软开关拓扑选择、单级功率变换器拓扑设计和两级功率变换器拓扑设计方面研究了屏栅电源的设计,提出了在效率、体积和可靠性方面综合优化的方案,对屏栅单个功率模块的设计开展了实物验证。得出:采用优化的模块分解,将输出电压固定,能有效降低元器件应力、优化变换器工作点效率以及提高变换器的可靠性;移相全桥和全桥LLC在设计宽范围输入变换器时存在半导体功率元器件应力高、电容应力高和磁性元器件加工困难等问题;采用BUCK/BOOST + 全桥LLC的两级拓扑方案,能简化高压整流电路的应力,同时适应宽范围输入电压,是宽范围输入输出屏栅电源优选的方案。

注释:
1)  · The technical difficulties of ion electric propulsion Beam power supply for deep space detector are analyzed. · The shortcomings of traditional single-stage converter in wide range input and output design are compared and analyzed. · A kind of optimal design scheme of Buck / boost + full bridge combination design is given.

English Abstract

陈昶文, 武荣. 宽范围输入输出离子电推进屏栅电源的设计[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200051
引用本文: 陈昶文, 武荣. 宽范围输入输出离子电推进屏栅电源的设计[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200051
CHEN Changwen, WU Rong. Design of Wide Range Input and Output Beam Power Supply for Ion Electric Propulsion[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200051
Citation: CHEN Changwen, WU Rong. Design of Wide Range Input and Output Beam Power Supply for Ion Electric Propulsion[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200051
参考文献 (33)

返回顶部

目录

    /

    返回文章
    返回