中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VLBI测轨的S/X致冷接收机技术

李斌 仲伟业 王生旺 张立军 梁世光

李斌, 仲伟业, 王生旺, 张立军, 梁世光. VLBI测轨的S/X致冷接收机技术[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200029
引用本文: 李斌, 仲伟业, 王生旺, 张立军, 梁世光. VLBI测轨的S/X致冷接收机技术[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200029
LI Bin, ZHONG Weiye, WANG Shengwang, ZHANG Lijun, LIANG Shiguang. S/X Cryogenic Receiver Technology for VLBI Satellite Tracking[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200029
Citation: LI Bin, ZHONG Weiye, WANG Shengwang, ZHANG Lijun, LIANG Shiguang. S/X Cryogenic Receiver Technology for VLBI Satellite Tracking[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200029

VLBI测轨的S/X致冷接收机技术

doi: 10.15982/j.issn.2095-7777.2020.20200029
基金项目: 探月工程资助项目
详细信息
    作者简介:

    李斌(1975– ),男,正高级工程师,主要研究方向:射电天文厘米波段高灵敏度接收系统,低温低噪声微波器件技术。通讯地址:上海市南丹路80号(200030)电话:(021)34775571 E-mail:bing@shao.ac.cn

  • ● The S/X cryogenic receivers have been successfully applied for VLBI satellite tracking in Chinese Lunar Exploration Project. ● Advanced technologies are adopted in the receiver design,including S/X dual frequency band feed horn,cryogenic low noise amplifier based on HEMT,cryogenic polarizer and low temperature superconducting filter. ● The receive noise of S-band is 8 K,and the system noise is 53 K at zenith. ● The receiver noise of X-band is 13 K,and the system noise temperature is 32 K at zenith.
  • 中图分类号: V443.1;TN927.3

S/X Cryogenic Receiver Technology for VLBI Satellite Tracking

  • 摘要: 高灵敏度致冷接收机关键设备,其低噪声放大器等核心前级器件工作在15 K温度环境中里,等效噪声温度相比传统常温设备降低一个量级,可以大幅度提升射电望远镜的接收灵敏度。接收机采用了双频馈源网络、致冷极化器、HEMT(High Electron Mobility Transistor)致冷低噪声放大器、超导滤波器等核心关键技术,实现了S/X双频信号的同时同目标高灵敏度接收。S波段接收机频带2.19~2.3 GHz,接收机噪声温度8 K,天顶方向系统噪声温度53 K,X波段接收机频带8.2~9.0 GHz,接收机噪声温度13 K,天顶方向系统噪声温度32 K,完成了VLBI测轨任务。
    Highlights
    ● The S/X cryogenic receivers have been successfully applied for VLBI satellite tracking in Chinese Lunar Exploration Project. ● Advanced technologies are adopted in the receiver design,including S/X dual frequency band feed horn,cryogenic low noise amplifier based on HEMT,cryogenic polarizer and low temperature superconducting filter. ● The receive noise of S-band is 8 K,and the system noise is 53 K at zenith. ● The receiver noise of X-band is 13 K,and the system noise temperature is 32 K at zenith.
  • 图  1  S/X致冷接收机系统原理框图

    Fig.  1  System block diagram of S/X cryogenic receiver

    图  2  S/X双频馈源网络结构示意图

    Fig.  2  Architecture diagram of S/X dual-band feed and polarizer

    图  3  S/X低温前端照片和三维模型

    Fig.  3  Picture and 3D modules of S/X-band cryogenic front end

    图  4  S波段低温前端噪声温度实测结果

    Fig.  4  Receiver noise of S-band cryogenic front end

    图  5  X波段低温前端噪声温度实测结果

    Fig.  5  Receiver noise of X-band cryogenic front end

    图  6  X波段致冷低噪声放大器电路版图

    Fig.  6  Circuit diagram of X-band refrigeration low noise amplifier

    图  7  超导带通滤波器照片

    Fig.  7  Picture of superconducting band-pass filter

    图  8  超导滤波器传输和反射特性测量结果

    Fig.  8  Measured results of superconducting BPF

    图  9  S波段天顶方向系统噪声

    Fig.  9  S-band system temperature at Zenith

    图  10  X波段天顶方向系统噪声

    Fig.  10  X-band system temperature at Zenith

    表  1  致冷低噪声放大器指标

    Table  1  Specifications of cryogenic LNAs

    波段S波段X波段
    频率范围/GHz2.19~2.38.2~9.0
    低温噪声温度/K58
    增益/dB3030
    输入回波损耗/dB–10–10
    输出回波损耗/dB–15–15
    P1dB/dBm–5–5
    功耗/mW5070
    下载: 导出CSV

    表  2  天顶方向系统噪声指标分配

    Table  2  System noise budget at Zenith

    波段S波段X波段说明
    宇宙背景辐射/K33理论值
    大气噪声/K44理论值
    天线噪声/K83估计值
    馈源罩/K33估计值
    双频馈源/K44理论值
    极化网络/K21/实测值
    低温前端/K914实测值
    后级噪声贡献/K11估计值
    系统噪声合计/K5332实测值
    下载: 导出CSV

    表  3  S/X致冷接收机性能汇总表

    Table  3  Performance of S/X cryogenic receiver

    S频段X频段
    频段/GHz2.19~2.308.2~9.0
    极化方式左右旋双圆极化
    致冷部件超导滤波器,噪声注入耦合器,低噪声放大器圆极化器,噪声注入耦合器,低噪声放大器
    制冷系统GM双级型制冷机和压缩机
    低温温度/K1412
    杜瓦真空度/mbar5E-83E-8
    接收机增益/dB7065
    低温前端噪声/K813
    系统噪声/K5332
    下载: 导出CSV
  • [1] 董光亮,李海涛,郝万宏,等. 中国深空测控系统建设与技术发展[J]. 深空探测学报,2018,5(2):99-114.

    DONG G L,LI H T,HAO W H,et al. Development and future of China’s deep space TT&C system[J]. Journal of Deep Space Exploration,2018,5(2):99-114.
    [2] 洪晓瑜, 张秀忠, 郑为民, 等. 深空探测学报, 2020, 本专辑, 准备中.

    HONG X Y, ZHANG X Z, ZHENG W M, et al. Journal of Deep Space Exploration, 2020, this album, in preparation.
    [3] 蒋栋荣,洪晓瑜. 甚长基线干涉测量技术在深空导航中的应用[J]. 科学,2008,60(1):10-14.

    JIANG D R,HONG X Y. VLBI for Deep-Space Navigation[J]. Science,2008,60(1):10-14.
    [4] MAJID W, BAGRI D. Availability of calibration sources for measuring spacecraft angular position with sub-nanoradian accuracy[R]. California: JPL Pasadena 2006.
    [5] BORDER J, LANYI G, SHIN D. Radiometric tracking for deep space navigation[C]//Proceedings of the AAS Guidance and Control Conference. Breckenridge, Colorado, USA: AAS, 2008.
    [6] TAYLOR J. Deep space communications[M]. Hoboken, New Jersey: Wiley Telecom, 2016.
    [7] POSPIESZALSKI M W. Extremely low-Noise amplification with cryogenic FET’s and HFET’s: 1970-2004[J]. IEEE Microwave Magazine,2005,6(3):62-75. doi:  10.1109/MMW.2005.1511915
    [8] BAUTISTA J J, BOWEN J G, FERNANDEZ N E, et al. Cryogenic, X-band and Ka-band InP HEMT based LNAs for the deep space network[C]//IEEE Aerospace Conference Proceedings. Big Sky, Montana, USA: IEEE, 2001.
    [9] 王生旺,李娇娇,汪名峰,等. 低温隔板极化器研制[J]. 低温技术,2014,42(5):8-11+21.

    WANG S W,LI J J,WANG M F,et al. Design and performances of a cryogenic septum polarizer[J]. Cryogenics & Superconductivity,2014,42(5):8-11+21.
    [10] 何川,王生旺,李斌,等. HEMT器件小信号等效电路低温模型的提取与分析[J]. 低温物理学报,2014,36(2):126-130.

    HE C,WANG S W,LI B,et al. Extraction and analysis of small signal modeling of HEMT at cryogenic temperature[J]. Low Temperature Physical Letters,2014,36(2):126-130.
    [11] 王生旺,李贤华,刘洋,等. 超导滤波器在射电天文RFI中的应用[J]. 低温物理学报,2018,40(5):25-28.

    WANG S W,LI X H,LIU Y,et al. Application of superconducting filter in radio astronomy RFI[J]. Low Temperature Physical Letters,2018,40(5):25-28.
    [12] 秦顺友,杜彪,张文静. 反射面天线欧姆损耗噪声温度的计算[J]. 中国电子科学研究院学报,2009,4(4):408-411. doi:  10.3969/j.issn.1673-5692.2009.04.016

    QIN S Y,DU B,ZHANG W J. Calculation of noise temperature due to reflector antenna ohmic loss[J]. Journal of China Academy of Electronics and Information Technology,2009,4(4):408-411. doi:  10.3969/j.issn.1673-5692.2009.04.016
    [13] 吴伟仁,李海涛,李赞,等. 中国深空测控网现状与展望[J]. 中国科学:信息科学,2020,50(1):87-108. doi:  10.1360/SSI-2019-0242

    WU W R,LI H T,LI Z,et al. Status and prospect of China’s deep space TT&C network[J]. Scientia Sinica Informationis,2020,50(1):87-108. doi:  10.1360/SSI-2019-0242
  • [1] 王靓玥, 郭延宁, 马广富.  火星探测器制动捕获策略研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20171123001
    [2] 郑为民, 张娟, 徐志骏, 刘磊, 童力, 张秀忠.  实时VLBI处理机技术 . 深空探测学报(中英文),
    [3] 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明.  深空探测器自主控制技术综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.002
    [4] 于天一, 费江涛, 李立春, 程肖.  月面巡视器路径规划方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.011
    [5] 贾晓宇, 杨晨, 王彤, 文毅.  近地小行星2016HO3表面温度建模研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.05.008
    [6] 范明意, 吕鹏.  环绕器次表层探测雷达实时处理技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.011
    [7] 徐亚男, 康小录, 余水淋.  磁屏蔽霍尔推力器技术的发展与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.04.005
    [8] 申智春, 林小艳, 程坤, 王海鹏.  火星探测器器箭分离冲击响应影响分析与评价 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.012
    [9] MARIANIMJ, DIRUSCIOA, NOTAROV, IESSL.  一种新型多普勒噪声抑制技术对BepiColombo任务无线电科学实验的性能提升 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.02.002
    [10] 周继时, 李莎, 刘磊, 解家春, 耿言.  核动力航天器总体设计研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.05.005
    [11] 熊森, 程谋森, 王墨戈, 杭观荣, 康小录.  同心嵌套式霍尔推力器参数设计方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.03.006
    [12] 王彦龙, 杨浩, 李兴达, 江豪成, 张天平.  5 kW环型离子推力器试验研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.03.005
    [13] 耿金越, 熊子昌, 龙军, 沈岩, 刘旭辉, 陈君.  微阴极电弧推力器研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.03.002
    [14] 张卓, 张泽旭, 谭浩.  基于鲁棒协同控制方法的多航天器交会问题 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.014
    [15] 胡海岩.  太阳帆航天器的关键技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.005
    [16] 叶培建, 于登云, 孙泽洲, 申振荣.  中国月球探测器的成就与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.004
    [17] 刘瑞霞, 张剑桥.  基于测速测角敏感器的火星探测器自主导航方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.03.004
    [18] 傅惠民, 娄泰山, 肖强.  火星进入段探测器自校准状态估计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.03.006
    [19] 夏元清, 沈刚辉, 孙浩然, 周鎏宇.  火星探测器进入段预测校正制导方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.04.007
    [20] 程瑶, 王日新, 徐敏强.  基于非线性未知输入观测器的航天器故障诊断 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.03.015
  • 加载中
计量
  • 文章访问数:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-06-25
  • 网络出版日期:  2020-09-30

VLBI测轨的S/X致冷接收机技术

doi: 10.15982/j.issn.2095-7777.2020.20200029
    基金项目:  探月工程资助项目
    作者简介:

    李斌(1975– ),男,正高级工程师,主要研究方向:射电天文厘米波段高灵敏度接收系统,低温低噪声微波器件技术。通讯地址:上海市南丹路80号(200030)电话:(021)34775571 E-mail:bing@shao.ac.cn

  • ● The S/X cryogenic receivers have been successfully applied for VLBI satellite tracking in Chinese Lunar Exploration Project. ● Advanced technologies are adopted in the receiver design,including S/X dual frequency band feed horn,cryogenic low noise amplifier based on HEMT,cryogenic polarizer and low temperature superconducting filter. ● The receive noise of S-band is 8 K,and the system noise is 53 K at zenith. ● The receiver noise of X-band is 13 K,and the system noise temperature is 32 K at zenith.
  • 中图分类号: V443.1;TN927.3

摘要: 高灵敏度致冷接收机关键设备,其低噪声放大器等核心前级器件工作在15 K温度环境中里,等效噪声温度相比传统常温设备降低一个量级,可以大幅度提升射电望远镜的接收灵敏度。接收机采用了双频馈源网络、致冷极化器、HEMT(High Electron Mobility Transistor)致冷低噪声放大器、超导滤波器等核心关键技术,实现了S/X双频信号的同时同目标高灵敏度接收。S波段接收机频带2.19~2.3 GHz,接收机噪声温度8 K,天顶方向系统噪声温度53 K,X波段接收机频带8.2~9.0 GHz,接收机噪声温度13 K,天顶方向系统噪声温度32 K,完成了VLBI测轨任务。

注释:
1)  ● The S/X cryogenic receivers have been successfully applied for VLBI satellite tracking in Chinese Lunar Exploration Project. ● Advanced technologies are adopted in the receiver design,including S/X dual frequency band feed horn,cryogenic low noise amplifier based on HEMT,cryogenic polarizer and low temperature superconducting filter. ● The receive noise of S-band is 8 K,and the system noise is 53 K at zenith. ● The receiver noise of X-band is 13 K,and the system noise temperature is 32 K at zenith.

English Abstract

李斌, 仲伟业, 王生旺, 张立军, 梁世光. VLBI测轨的S/X致冷接收机技术[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200029
引用本文: 李斌, 仲伟业, 王生旺, 张立军, 梁世光. VLBI测轨的S/X致冷接收机技术[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200029
LI Bin, ZHONG Weiye, WANG Shengwang, ZHANG Lijun, LIANG Shiguang. S/X Cryogenic Receiver Technology for VLBI Satellite Tracking[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200029
Citation: LI Bin, ZHONG Weiye, WANG Shengwang, ZHANG Lijun, LIANG Shiguang. S/X Cryogenic Receiver Technology for VLBI Satellite Tracking[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200029
参考文献 (13)

返回顶部

目录

    /

    返回文章
    返回