中文核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“嫦娥4号”高精度VLBI测轨技术

王广利 洪晓瑜 刘庆会 李斌 马军 苏彦 郝龙飞

王广利, 洪晓瑜, 刘庆会, 李斌, 马军, 苏彦, 郝龙飞. “嫦娥4号”高精度VLBI测轨技术[J]. 深空探测学报(中英文), 2020, 7(4): 332-339. doi: 10.15982/j.issn.2095-7777.2020.20200026
引用本文: 王广利, 洪晓瑜, 刘庆会, 李斌, 马军, 苏彦, 郝龙飞. “嫦娥4号”高精度VLBI测轨技术[J]. 深空探测学报(中英文), 2020, 7(4): 332-339. doi: 10.15982/j.issn.2095-7777.2020.20200026
WANG Guangli, HONG Xiaoyu, LIU Qinghui, LI Bin, MA Jun, SU Yan, HAO Longfei. High-Precision VLBI Orbit Measurement Technology in the Chang'E-4 Mission[J]. Journal of Deep Space Exploration, 2020, 7(4): 332-339. doi: 10.15982/j.issn.2095-7777.2020.20200026
Citation: WANG Guangli, HONG Xiaoyu, LIU Qinghui, LI Bin, MA Jun, SU Yan, HAO Longfei. High-Precision VLBI Orbit Measurement Technology in the Chang'E-4 Mission[J]. Journal of Deep Space Exploration, 2020, 7(4): 332-339. doi: 10.15982/j.issn.2095-7777.2020.20200026

“嫦娥4号”高精度VLBI测轨技术

doi: 10.15982/j.issn.2095-7777.2020.20200026
基金项目: 国家自然科学基金资助项目(11873077)
详细信息
    作者简介:

    王广利(1965– ),男,研究员,博士生导师,主要研究方向:深空探测射电测量技术,天体测量与空间大地测量。通讯地址:上海市南丹路80号上海天文台(200030)电话:(021)34775230 E-mail:wgl@shao.ac.cn

  • ●S-band ΔDOR technology is successfully applied to relay satellite orbit measurement for the first time. ● Fast task switching mode is adopted considering the requirements of relay satellite orbit measurement during the orbit measurement of the lander-rover combination prober. ● For the first time,the Tianma 65 m radio telescope is used to carry out the on-orbit calibration of the relay satellite antenna,and the calibration accuracy is better than the main beam of the relay antenna by 2%.
  • 中图分类号: P135,P164

High-Precision VLBI Orbit Measurement Technology in the Chang'E-4 Mission

  • 摘要: “嫦娥4号”在国际上首次实现了月球背面软着陆和巡视勘察。“嫦娥4号”中继星任务中首次创新性使用S波段双差分单向测距(Delta Differential One-way Ranging,ΔDOR)测量技术,自主研制的S波段ΔDOR观测数据处理系统在探测器任务期间,首次实现了甚长基线干涉测量(Very Long Baseline Interferometry,VLBI)系统分时快速转换观测中继星和探测器;利用天马射电望远镜对中继星天线进行了在轨指向标定。深入分析了VLBI需要解决的主要技术问题,提出了具体的解决措施,通过重点对中继星、探测器实时任务期间的测量结果的分析,得出这些技术手段对任务目标的完成具有重要作用。
    Highlights
    ●S-band ΔDOR technology is successfully applied to relay satellite orbit measurement for the first time. ● Fast task switching mode is adopted considering the requirements of relay satellite orbit measurement during the orbit measurement of the lander-rover combination prober. ● For the first time,the Tianma 65 m radio telescope is used to carry out the on-orbit calibration of the relay satellite antenna,and the calibration accuracy is better than the main beam of the relay antenna by 2%.
  • 图  1  ΔDOR测量示意图

    Fig.  1  Schematic diagram of ΔDOR

    图  2  中继星两组S波段ΔDOR信号(F1、F2)

    注:pc表示主载波,L1表示左侧侧音,R1表示右侧侧音,侧音间隔实际为3.7 MHz左右。

    Fig.  2  Two sets of S band ΔDOR signals of relay satellite(F1、F2)

    图  3  探测器两组X ΔDOR信号(F4、F5)

    注:L1、R1表示主载波两侧第一对侧音,L2、R2表示主载波两侧第二对侧音,侧音间隔分别近似为3.8 MHz 和19.2 MHz。

    Fig.  3  Two sets of X band ΔDOR signals of prober(F4、F5)

    图  4  在65 m站加装S波段超导滤波器,消除RFI前后的信号变化对比

    Fig.  4  The S-band superconducting filter is installed to eliminate or weaken RFI,the contrast of beforeand after

    图  5  采用新的电离层建模预报策略计算的定轨残差与老方法的对比

    注:观测数据为CE-5T1任务期间的实测数据,以南山−天马基线为例,蓝色更接近零值,可见新方法显著提高了电离层修正精度。

    Fig.  5  The comparison between the orbit determination residual calculated by the new ionospheric modeling and prediction method and the old method

    图  6  探测器、中继星分时快速切换观测流程

    Fig.  6  Quick task-switching of observation of relay satellite and probe

    图  7  中继星天线指向坐标系

    Fig.  7  Antenna coordinate system of relay satellite

    图  8  中继星天线在轨指向标定示意图

    Fig.  8  Schematic diagram of pointing calibration of relay satellite antenna in orbit

    图  9  指向迭代拟合过程

    Fig.  9  The iterative fitting of antenna pointing offset

    图  10  中继星实时任务期间的实时性统计蓝色、橙色和灰色分别表示时延、时延率、定位结果的实时性统计

    Fig.  10  VLBI real-time processing performance of relay satellite during real-time tracking

    图  11  探测器实时任务期间的实时性统计

    Fig.  11  VLBI real-time processing performance of probe during real-time tracking

    图  12  探测器VLBI测量时延和时延率误差

    Fig.  12  Formal errors of delay and rate of probe

    图  13  中继星发射后到探测器月球背面着陆前的中继星时延和时延率测量误差

    Fig.  13  Delay and rate formal errors of relay satellite between its launching and probe soft-landing

    图  14  “嫦娥4号”中继星任务时延数据定轨后残差统计

    Fig.  14  VLBI delay post-fitting residuals of OD of relay satellite

    图  15  “嫦娥4号”中继星任务时延率数据定轨后残差统计

    Fig.  15  VLBI delay rate post-fitting residuals of OD of relay satellite

    图  16  “嫦娥4号”探测器任务时延数据定轨后残差统计

    Fig.  16  VLBI delay post-fitting residuals of OD of probe

    图  17  “嫦娥4号”探测器任务时延率数据定轨后残差统计

    Fig.  17  VLBI delay rate post-fitting residuals of OD of probe

    图  18  s8614a南山−天马基线中继星定轨后时延残差

    Fig.  18  s8614a Ur-Tm delay residuals after OD

    图  19  带通效应

    Fig.  19  Bandpass effect

    表  1  CCSDS建议的DOR侧音频率

    Table  1  CCSDS recommended DOR tones

    星地链路频段/GHzDOR侧音对DOR侧音频率近似值/MHz
    S 214
    X 824/20
    Ka 32/3734/20/76
    下载: 导出CSV

    表  2  中继星天线在轨标定结果

    Table  2  The result of the antenna pointing calibration of relay satellite in orbit

    日期观测数拟后残差/dBX/10−3(°)Y/10−3(°)
    6.16(1)16 1080.415.7 ± 0.4−40.2 ± 0.4
    6.16(2)16 5530.119.5 ± 1.2−23.0 ± 1.1
    6.1717 2840.272.9 ± 0.6−37.1 ± 1.1
    6.227 6270.2095.7 ± 1.0−57.6 ± 0.9
    6.295 3220.6154.3 ± 0.7−22.9 ± 0.8
    7.054 4320.4456.2 ± 0.7−41.8 ± 0.7
    11.091 1610.4517.0 ± 1.2−36.0 ± 1.2
    下载: 导出CSV
  • [1] 董光亮,李海涛,郝万宏,等. 中国深空测控系统建设与技术发展[J]. 深空探测学报,2018,5(2):99-114.

    DONG G L,LI H T,HAO W H,et al. Development and future of China’s deep space TT&C system[J]. Journal of Deep Space Exploration,2018,5(2):99-114.
    [2] 蒋栋荣,洪晓瑜. 甚长基线干涉测量技术在深空导航中的应用[J]. 科学,2008,60(1):10-14.

    JIANG D R,HONG X Y. VLBI for deep-space navigation[J]. Science,2008,60(1):10-14.
    [3] 洪晓瑜. VLBI技术的发展和“ 嫦娥工程”中的应用[J]. 自然杂志,2007,29(5):297-299.

    HONG X Y. VLBI techniques and application in the Chang’e lunar orbiter[J]. Chinese Journal of Nature,2007,29(5):297-299.
    [4] 曹建峰,黄勇,胡小工,等. USB与VLBI联合确定“嫦娥一号”卫星撞月点的位置[J]. 宇航学报,2010,31(7):1724-1729. doi:  10.3873/j.issn.1000-1328.2010.07.005

    CAO J F,HUANG Y,HU X G,et al. Determination of impact site of CE-1 using USB and VLBI data[J]. Journal of Astronautics,2010,31(7):1724-1729. doi:  10.3873/j.issn.1000-1328.2010.07.005
    [5] 洪晓瑜,郑为民,王广利. “嫦娥三号”和“玉兔”软着陆的VLBI实时精密测定轨和月面定位[J]. 中国科技成果,2015,16(19):30-32. doi:  10.3772/j.issn.1009-5659.2015.19.013
    [6] 刘庆会,吴亚军. 高精度VLBI技术在深空探测中的应用[J]. 深空探测学报,2015,2(3):208-212.

    LIU Q H,WU Y J. Application of high precision VLBI technology in deep space exploration[J]. Journal of Deep Space Exploration,2015,2(3):208-212.
    [7] 吴伟仁,王广利,节德刚,等. 基于△DOR信号的高精度VLBI技术[J]. 中国科学(信息科学),2013,43(2):185-196.

    WU W R,WANG G L,JIE D G,et al. High-accuracy VLBI technique using △DOR signals[J]. Science in China(Information Sciences),2013,43(2):185-196.
    [8] 张碧雄,巨兰. CCSDS建议在深空通信导航中的应用研究[J]. 飞行器测控学报,2011,30(增刊):26-31.

    ZHANG B X,JU L. Application of CCSDS recommendations in deep space communication and navigation[J]. Journal of Spacecraft TT & C Technology,2011,30(增刊):26-31.
    [9] CCSDS. CCSDS 506. 0-M-1, Delta Differential One Way Ranging (Delta-DOR) operations[S]. Washington, DC: CCSDS, 2011.
  • [1] 黄勇, 李培佳, 胡小工.  VLBI月球定轨和月面定位技术及其应用 . 深空探测学报(中英文), 2020, 7(4): 340-346. doi: 10.15982/j.issn.2095-7777.2020.20200022
    [2] 洪晓瑜, 张秀忠, 郑为民, 王广利, 刘庆会, 王娜, 张洪波, 汪敏, 舒逢春.  VLBI技术研究进展及在中国探月工程的应用 . 深空探测学报(中英文), 2020, 7(4): 321-331. doi: 10.15982/j.issn.2095-7777.2020.20200030
    [3] 陈如荣, 张海燕, 金乘进, 高智胜, 朱岩, 岳友岭, 朱凯.  FAST VLBI系统和观测研究 . 深空探测学报(中英文), 2020, 7(2): 136-143. doi: 10.15982/j.issn.2095-7777.2020.20190618001
    [4] 周伟莉, 宋淑丽, 李培佳, 张志斌, 黄超, 黄勇, 王广利.  基于GNSS加密网的VLBI电离层时延修正方法 . 深空探测学报(中英文), 2020, 7(4): 362-370. doi: 10.15982/j.issn.2095-7777.2020.20200056
    [5] 郑为民, 张娟, 徐志骏, 刘磊, 童力, 张秀忠.  实时VLBI处理机技术 . 深空探测学报(中英文), 2020, 7(4): 354-361. doi: 10.15982/j.issn.2095-7777.2020.20200027
    [6] 侯东辉, 张珅毅, RobertFWimmer-Schweingruber, 于佳, SoenkeBurmeister, 沈国红, 袁斌, 王春琴, 张斌全.  月球粒子辐射环境探测现状 . 深空探测学报(中英文), 2019, 6(2): 127-133. doi: 10.15982/j.issn.2095-7777.2019.02.003
    [7] 曹建峰, 陈略, 董卫华, 段建锋, 韩松涛, 张宇.  双站跟踪模式下“嫦娥4号”中继星定轨仿真分析 . 深空探测学报(中英文), 2019, 6(3): 241-246. doi: 10.15982/j.issn.2095-7777.2019.03.007
    [8] 叶志玲, 黄晓峰, 顾明.  “嫦娥4号”自主运行任务的设计与实现 . 深空探测学报(中英文), 2019, 6(4): 358-363. doi: 10.15982/j.issn.2095-7777.2019.04.007
    [9] 段建锋, 李勰, 李翠兰, 王兆魁.  “嫦娥4号”中继星使命轨道段定轨计算与分析 . 深空探测学报(中英文), 2019, 6(3): 247-253. doi: 10.15982/j.issn.2095-7777.2019.03.008
    [10] 马传令, 刘勇, 梁伟光, 张尧.  “嫦娥4号”中继星应急轨道控制策略设计与分析 . 深空探测学报(中英文), 2019, 6(3): 269-276. doi: 10.15982/j.issn.2095-7777.2019.03.011
    [11] 孟治国, 李翠, 平劲松, 黄倩, 蔡占川, AlexanderGusev.  月面冯·卡门撞击坑的着陆选址和科学探测目标浅析 . 深空探测学报(中英文), 2018, 5(1): 3-11. doi: 10.15982/j.issn.2095-7777.2018.01.001
    [12] 黄倩, 王太茂, 赵健楠, 孟治国.  “嫦娥4号”月球背面着陆区月壳及深部结构特征 . 深空探测学报(中英文), 2018, 5(1): 41-49. doi: 10.15982/j.issn.2095-7777.2018.01.006
    [13] 刘庆会.  火星探测VLBI测定轨技术 . 深空探测学报(中英文), 2018, 5(5): 435-441. doi: 10.15982/j.issn.2095-7777.2018.05.005
    [14] 张立华, 熊亮, 王鹏, 孙骥, 周文艳, 高珊, 刘适, 王晓磊, 关轶峰, 张爱兵, 徐进, 陈国辉.  “嫦娥4号”中继星任务分析与系统设计 . 深空探测学报(中英文), 2018, 5(6): 515-523. doi: 10.15982/j.issn.2095-7777.2018.06.003
    [15] 陈国辉, 华岳, 王波, 郑士昆, 肖勇, 马小飞, 张爱兵, 陈岚.  “嫦娥4号”中继星伞状可展开天线设计与验证 . 深空探测学报(中英文), 2018, 5(6): 524-530. doi: 10.15982/j.issn.2095-7777.2018.06.004
    [16] 唐明亮, 王颖, 张学功, 古艳峰, 卢亮亮.  一种探月任务多窗口发射轨道设计方法 . 深空探测学报(中英文), 2017, 4(2): 118-121. doi: 10.15982/j.issn.2095-7777.2017.02.003
    [17] 李飞, 张熇, 吴学英, 马继楠, 卢亮亮.  月球背面地形对软着陆探测的影响分析 . 深空探测学报(中英文), 2017, 4(2): 143-149. doi: 10.15982/j.issn.2095-7777.2017.02.007
    [18] MikhailVasilyevichVASILYEV, EleonoraIvanovnaYAGUDINA.  俄罗斯应用天文研究所月球历表研究现状 . 深空探测学报(中英文), 2014, 1(3): 187-191. doi: 10.15982/j.issn.2095-7777.2014.03.004
    [19] 平劲松, 王明远, 张素君, 简念川, 王震, 鄢建国, 孟桥, 陈从颜, 席禹豪, 唐继斐, 张天翼, 李文潇, 张洪波, 汪敏.  嫦娥系列探月卫星无线电科学实验简介 . 深空探测学报(中英文), 2014, 1(3): 192-199. doi: 10.15982/j.issn.2095-7777.2014.03.005
    [20] 孙靖, 王美, 平劲松.  利用VLBI技术进行深空航天器跟踪的仿真分析 . 深空探测学报(中英文), 2014, 1(3): 226-229. doi: 10.15982/j.issn.2095-7777.2014.03.011
  • 加载中
图(19) / 表 (2)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  349
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 修回日期:  2020-06-25
  • 网络出版日期:  2020-09-25
  • 刊出日期:  2020-11-09

“嫦娥4号”高精度VLBI测轨技术

doi: 10.15982/j.issn.2095-7777.2020.20200026
    基金项目:  国家自然科学基金资助项目(11873077)
    作者简介:

    王广利(1965– ),男,研究员,博士生导师,主要研究方向:深空探测射电测量技术,天体测量与空间大地测量。通讯地址:上海市南丹路80号上海天文台(200030)电话:(021)34775230 E-mail:wgl@shao.ac.cn

  • ●S-band ΔDOR technology is successfully applied to relay satellite orbit measurement for the first time. ● Fast task switching mode is adopted considering the requirements of relay satellite orbit measurement during the orbit measurement of the lander-rover combination prober. ● For the first time,the Tianma 65 m radio telescope is used to carry out the on-orbit calibration of the relay satellite antenna,and the calibration accuracy is better than the main beam of the relay antenna by 2%.
  • 中图分类号: P135,P164

摘要: “嫦娥4号”在国际上首次实现了月球背面软着陆和巡视勘察。“嫦娥4号”中继星任务中首次创新性使用S波段双差分单向测距(Delta Differential One-way Ranging,ΔDOR)测量技术,自主研制的S波段ΔDOR观测数据处理系统在探测器任务期间,首次实现了甚长基线干涉测量(Very Long Baseline Interferometry,VLBI)系统分时快速转换观测中继星和探测器;利用天马射电望远镜对中继星天线进行了在轨指向标定。深入分析了VLBI需要解决的主要技术问题,提出了具体的解决措施,通过重点对中继星、探测器实时任务期间的测量结果的分析,得出这些技术手段对任务目标的完成具有重要作用。

注释:
1)  ●S-band ΔDOR technology is successfully applied to relay satellite orbit measurement for the first time. ● Fast task switching mode is adopted considering the requirements of relay satellite orbit measurement during the orbit measurement of the lander-rover combination prober. ● For the first time,the Tianma 65 m radio telescope is used to carry out the on-orbit calibration of the relay satellite antenna,and the calibration accuracy is better than the main beam of the relay antenna by 2%.

English Abstract

王广利, 洪晓瑜, 刘庆会, 李斌, 马军, 苏彦, 郝龙飞. “嫦娥4号”高精度VLBI测轨技术[J]. 深空探测学报(中英文), 2020, 7(4): 332-339. doi: 10.15982/j.issn.2095-7777.2020.20200026
引用本文: 王广利, 洪晓瑜, 刘庆会, 李斌, 马军, 苏彦, 郝龙飞. “嫦娥4号”高精度VLBI测轨技术[J]. 深空探测学报(中英文), 2020, 7(4): 332-339. doi: 10.15982/j.issn.2095-7777.2020.20200026
WANG Guangli, HONG Xiaoyu, LIU Qinghui, LI Bin, MA Jun, SU Yan, HAO Longfei. High-Precision VLBI Orbit Measurement Technology in the Chang'E-4 Mission[J]. Journal of Deep Space Exploration, 2020, 7(4): 332-339. doi: 10.15982/j.issn.2095-7777.2020.20200026
Citation: WANG Guangli, HONG Xiaoyu, LIU Qinghui, LI Bin, MA Jun, SU Yan, HAO Longfei. High-Precision VLBI Orbit Measurement Technology in the Chang'E-4 Mission[J]. Journal of Deep Space Exploration, 2020, 7(4): 332-339. doi: 10.15982/j.issn.2095-7777.2020.20200026
    • 我国探月工程从“嫦娥1号”开始确立了统一S波段(Unified S-Band,USB)/统一X波段(Unified X-Band,UXB)测距测速加甚长基线干涉测量(Very Long Baseline Interferometry,VLBI)测角的深空飞行器测定轨技术配置[1-3],VLBI测轨技术由此在历次探月任务中不断发展进步。在“嫦娥1号”“嫦娥2号”任务中,VLBI实现了利用S波段窄带单通道信号的测定轨能力,在“嫦娥3号”任务中实现了利用X波段双差单向测距(Delta-Differential One-way Ranging,ΔDOR)多信号综合处理的测定轨能力。在技术方法不断进步完善的同时,VLBI测轨技术在满足更快的实时性和更高的测量精度需求方面也为历次探月任务的圆满完成发挥了不可或缺的关键作用。在这一发展过程中,VLBI测轨系统建立了具有自己鲜明特色的测量与数据处理系统,所有算法与软件都立足于自主研发,整个系统具有双路热备运行能力,既可以满足实时性运行需求,也具备事后处理能力[4-7]

      我国“嫦娥4号”于2018年5月21日发射中继星,并成功实现在地月拉格朗日L2点绕飞,为“嫦娥4号”探测器在月球背面着陆开展巡视探测工作提供地月中继通信服务。“嫦娥4号”探测器在月球背面着陆,开展巡视探测任务,使我国成为国际上首个在月球背面着陆开展巡视探测的国家。为满足“嫦娥4号”任务需求,VLBI测轨技术得到了更进一步的发展。

      “嫦娥4号”任务期间,VLBI需要采用S波段ΔDOR技术开展中继星测轨工作,采用X波段ΔDOR技术开展探测器的测轨工作。基于“嫦娥4号”这一特点,VLBI测轨技术需要:①具备S波段ΔDOR测量能力;②在探测器任务期间同时开展对中继星的测轨工作;③开展中继星天线在轨指向标定工作。本文对“嫦娥4号”任务中采用的关键技术手段及实施效果进行了分析评估。

    • ΔDOR是指借助河外射电源观测以实现测量系统误差修正,通过深空飞行器与临近河外射电源的快速切换观测,原理如图1所示,实现了对测量系统设备误差和器地空间信号传输路径上的介质误差的精确修正。我国首次在“嫦娥2号”任务中开展了X波段ΔDOR技术实验验证,并取得了比较理想的效果[8],显示了其巨大的技术优势。ΔDOR是在空间数据系统咨询委员会(Consultative Committee for Space Data System,CCSDS)规范中有明确定义的测量技术[9-10],并针对不同频段的应用给出了具体定义,参见表1。一个完整的ΔDOR测量单位可以表示为“射电源−航天器−射电源”或“航天器−射电源−航天器”。

      图  1  ΔDOR测量示意图

      Figure 1.  Schematic diagram of ΔDOR

      表 1  CCSDS建议的DOR侧音频率

      Table 1.  CCSDS recommended DOR tones

      星地链路频段/GHzDOR侧音对DOR侧音频率近似值/MHz
      S 214
      X 824/20
      Ka 32/3734/20/76

      “嫦娥4号”实时任务模式工作时采用“射电源−航天器”连续切换模式(外推修正),在事后模式下采用“射电源−航天器−射电源”模式(内插修正),目标切换时间一般为5 min。

      中继星观测采用S波段ΔDOR技术,分别用3个记录通道观测3个DOR信号,两组DOR信号共采用6个记录通道,如图2所示。探测器观测利用X波段ΔDOR技术,采用8个通道记录2组DOR共10个信号中的9个信号(其中1个通道记录两组DOR信号的临近的两个频点F4R1和F5L1),F5R1没记录,如图3所示。

      图  2  中继星两组S波段ΔDOR信号(F1、F2)

      Figure 2.  Two sets of S band ΔDOR signals of relay satellite(F1、F2)

      图  3  探测器两组X ΔDOR信号(F4、F5)

      Figure 3.  Two sets of X band ΔDOR signals of prober(F4、F5)

    • 相对于探月历次任务,“嫦娥4号”VLBI测轨主要有3个新的关键技术问题:①实现S波段ΔDOR技术;②在一个工作时段内实现对中继星和探测器测轨;③实现利用天马65 m射电望远镜开展中继星天线在轨指向标定工作。

    • 实现中继星S波段ΔDOR技术相对于X波段ΔDOR需要解决3个方面的问题:S波段测站环境干扰信号抑制、S波段电离层测量误差修正技术、S波段ΔDOR算法实现,重点是模糊度消除。

      1)S波段干扰信号抑制技术

      目前随着通信技术的发展,VLBI测站普遍存在非常严重的无线电干扰,特别是在S波段附近。由于河外射电源信号及卫星信号都比较弱,无线电干扰最大的危害是造成接收系统饱和失真,或者测量信噪比下降,进而导致测量精度显著下降,模糊度消除算法失效。针对这一问题,经过对各测站的无线电干扰情况监测研究,对测站S波段信号接收设备加装干扰信号滤波单元,消除或大幅度抑制干扰信号,效果如图4所示。

      图  4  在65 m站加装S波段超导滤波器,消除RFI前后的信号变化对比

      Figure 4.  The S-band superconducting filter is installed to eliminate or weaken RFI,the contrast of beforeand after

      2)S波段电离层测量误差修正技术

      电离层在S波段对VLBI观测时延的影响大约是X波段的15倍。对X波段如果电离层时延修正误差为0.1 ns,则在S波段为1.5 ns。目前S波段电离层模型在低高度角误差最大可达10 ns,特别是在电离层活动强烈时段内。针对这一问题,主要从电离层模型优化和改进预报模式2个方面解决。具体方案是采用更靠近观测日、更多的国内全球导航卫星系统(Global Navigation Satellite System,GNSS)观测站数据结合全球GNSS测量数据建立电离层时延预报模型,一方面提高模型精度;另一方面缩短预报时间降低预报误差。利用“嫦娥5号”再入返回实验(CE-5T1)期间VLBI观测数据,采用新的电离层建模预报策略对数据重新处理,比较了2种方法的定轨后残差,如图5所示,蓝色表示新方法,红色表示CE-5T1时的方法,可以发现新方法总体上显著减小了基线的定轨后残差。

      图  5  采用新的电离层建模预报策略计算的定轨残差与老方法的对比

      Figure 5.  The comparison between the orbit determination residual calculated by the new ionospheric modeling and prediction method and the old method

      3)S波段ΔDOR算法实现——模糊度消除技术

      S波段ΔDOR只有3个频点,而X波段ΔDOR有5个频点(如图2图3所示),模糊度消除基本方法是根据多频点相位的线性一致性判断。由于S波段信号频点冗余度小,只要有一个频点数据失效或误差超限,就将导致模糊度判断困难。解决策略是实现更精准的误差控制,最大程度减少频点失效事件,并实现两频点的信号综合算法。具体方案是大量分析探月历史数据,分析总结实现S波段频点相位误差控制门限精确合理,并利用北斗卫星宽频S波段信号模拟ΔDOR信号,进行大量观测验证。

    • “嫦娥4号”任务中在探测器实时任务期间存在同时开展对中继星测轨的任务需求,受到VLBI测站资源与数据处理能力限制,VLBI测轨分系统不具备同时开展这两个目标的观测能力。针对这一问题,采用探测器、中继星快速切换观测处理技术(图6),观测设备快速自动化配置,以及数据处理系统快速转换技术实现对中继星和探测器测轨任务的分时快速转换功能。解决策略是改进观测设计、优化数据处理系统接口及软件适应性修改。

      1)优化观测模式设计中继星实时任务期间VLBI观测采用16个频率通道2 MHz带宽观测。在探测器实时任务期间为实现探测器、中继星分时转换观测,统一采用8通道4 MHz带宽观测,降低测站频率配置的难度。测站统一配置主备控制计算机,改进控制算法,提高系统可靠性。

      2)改进数据处理系统,优化系统内部接口,实现自动任务识别处理,对数据通信模块重新设计,实现自动化任务识别与任务转换。探测器任务前通过多次实测模拟分时转换,开展观测处理演练,验证了方案的可行性和可靠性。

      图  6  探测器、中继星分时快速切换观测流程

      Figure 6.  Quick task-switching of observation of relay satellite and probe

    • 为了充分发挥中继星在轨提供地月中继通信性能,需对中继星天线进行在轨指向标定。天马65 m射电望远镜对深空天线进行在轨指向标定是我国首次开展这项工作。

      其基本原理是利用中继星天线主波束理论(设计)方向图(增益),以及天马望远镜在中继星以不同偏转角对准天马望远镜时接收到的实际增益,考虑空间和大气衰减后,计算理论和实测的不同方向增益的差异,其差异是由中继星天线指向不准引起的。根据这个关系可以拟合得到中继星天线相对于卫星本地坐标系的指向偏差。中继星主波束不同方向的归一化增益函数可以记为$G(\theta,\phi )$$\theta $$\phi $分别表示天线电轴在天线坐标系中的定位角(如图7所示),归一化后$G(0,0) = 1$

      图  7  中继星天线指向坐标系

      Figure 7.  Antenna coordinate system of relay satellite

      基于中继星天线设计的主波束方向图网格化计算得到不同方向的天线增益,当存在指向误差时,假定在星基天线坐标系的指向偏差用${\theta _0}$${\phi _0}$表示,则增益函数变为$G(\theta - {\theta _0},\phi - {\phi _0})$。根据中继星天线不同偏转角$\theta $$\phi $,得到天马望远镜观测的增益${G_{{\rm{obs}}}}$,并根据天线理论方向图计算得到理论增益${G_{{\rm{theo}}}}$(不考虑指向偏差),则二者之间的差异可以表示为

      $$ {G_{{\rm{obs}}}} - {G_{{\rm{theo}}}} = {\left. {\frac{{\partial G}}{{\partial \theta }}} \right|_{\theta,\phi }}\Delta \theta + {\left. {\frac{{\partial G}}{{\partial \phi }}} \right|_{\theta,\phi }}\Delta \phi + \varepsilon $$ (1)

      其中:ε是测量误差。

      通过迭代估计得到指向偏差${\theta _0} = \sum\limits_i {\Delta {\theta _i}} $${\phi _0} = \sum\limits_i {\Delta {\phi _i}} $i为迭代次数。

      在指向标定期间,65 m射电望远镜根据中继星轨道跟踪,中继星天线对准65 m天线进行十字扫描或螺旋扫描,65 m记录设备记录中继星不同指向的信号强度变化,根据变化的强弱拟合得到中继星天线的指向信息,如图8所示。中继星在轨期间在2018年进行了7次标定,指向精度都优于0.01°。4.2 m中继星天线在7.2 GHz频率的主波束宽度为0.57°,指向精度优于主波束宽度的2%,核定结果如表2所示。天马望远镜接收记录中继星天线以不同波束偏离角的信号强度,然后根据中继星天线的方向图拟合天线实际指向,拟后残差表示指向拟合的精确程度。图9(a)(c)显示了迭代拟合过程。绿色实线表示基于拟合的${\theta _0}$${\phi _0}$计算的增益,红色点为实测的增益。可以发现绿色线条随迭代次数不断逼近红色点线的过程。实际数据分析中也估计了天线的实际增益。一般迭代3次可以就得到精确指向偏差估计。

      表 2  中继星天线在轨标定结果

      Table 2.  The result of the antenna pointing calibration of relay satellite in orbit

      日期观测数拟后残差/dBX/10−3(°)Y/10−3(°)
      6.16(1)16 1080.415.7 ± 0.4−40.2 ± 0.4
      6.16(2)16 5530.119.5 ± 1.2−23.0 ± 1.1
      6.1717 2840.272.9 ± 0.6−37.1 ± 1.1
      6.227 6270.2095.7 ± 1.0−57.6 ± 0.9
      6.295 3220.6154.3 ± 0.7−22.9 ± 0.8
      7.054 4320.4456.2 ± 0.7−41.8 ± 0.7
      11.091 1610.4517.0 ± 1.2−36.0 ± 1.2

      图  8  中继星天线在轨指向标定示意图

      Figure 8.  Schematic diagram of pointing calibration of relay satellite antenna in orbit

      图  9  指向迭代拟合过程

      Figure 9.  The iterative fitting of antenna pointing offset

    • 中继星实时任务时间为2018年5月21日发射到2018年6月15日进入使命轨道后,VLBI共计进行了24次观测,探测器实时任务时间为2018年12月8日发射到2019年1月3日月球背面着陆前,共计22次观测,两次任务期间平均每次观测持续时长都接近12 h。

      每次观测的实时性指标如图10图11所示。图10中横坐标以观测代码标识,其中间的四位数字表示年(1位数字)、月(1位数字)和日(2位数字)。两次任务实时性指标都满足了任务要求,其中中继星最快小于20 s、探测器最快小于10 s产生观测数据。

      图  10  中继星实时任务期间的实时性统计蓝色、橙色和灰色分别表示时延、时延率、定位结果的实时性统计

      Figure 10.  VLBI real-time processing performance of relay satellite during real-time tracking

      图  11  探测器实时任务期间的实时性统计

      Figure 11.  VLBI real-time processing performance of probe during real-time tracking

      探测器时延与时延率测量误差见图12图12中蓝色是时延误差,单位ns,橙色是时延率误差,单位ps/s。每次观测的误差是天马站、密云站、昆明站和南山站4站构成的6条基线的平均误差。

      图  12  探测器VLBI测量时延和时延率误差

      Figure 12.  Formal errors of delay and rate of probe

      中继星时延与时延率测量误差如图13所示。分别如图14图15所示。探测器任务期间的定轨时延、时延率残差如图16图17所示。

      图  13  中继星发射后到探测器月球背面着陆前的中继星时延和时延率测量误差

      Figure 13.  Delay and rate formal errors of relay satellite between its launching and probe soft-landing

      图  14  “嫦娥4号”中继星任务时延数据定轨后残差统计

      Figure 14.  VLBI delay post-fitting residuals of OD of relay satellite

      图  15  “嫦娥4号”中继星任务时延率数据定轨后残差统计

      Figure 15.  VLBI delay rate post-fitting residuals of OD of relay satellite

      图  16  “嫦娥4号”探测器任务时延数据定轨后残差统计

      Figure 16.  VLBI delay post-fitting residuals of OD of probe

      图  17  “嫦娥4号”探测器任务时延率数据定轨后残差统计

      Figure 17.  VLBI delay rate post-fitting residuals of OD of probe

      中继星任务期间VLBI时延、时延率总体平均精度0.4 ns、0.1 ps/s,定轨后残差0.8 ns、0.7 ps/s。探测器任务期间VLBI时延、时延率总体平均精度0.2 ns、0.1 ps/s,定轨后残差0.7 ns、0.5 ps/s。可以发现定轨后时延、时延率残差显著大于测量误差,最主要因素是中性大气和电离层时延的差分效应影响、校准射电源误差,其次是设备系统残余的非线性响应影响。图18显示了s8614a中继星观测南山−天马基线时延定轨后残差,可以明显发现时延的跳动。

      图  18  s8614a南山−天马基线中继星定轨后时延残差

      Figure 18.  s8614a Ur-Tm delay residuals after OD

      数据处理中还发现带通不平整带来的误差,如图19所示。当采用射电源观测修正探测器观测时,由于设备带通并非完全是一条理想的平直直线,导致射电源观测相位(图19中双圆圈)与卫星观测相位(单圆圈)零值有差异,这个差异最大可达5°。其对ΔDOR产生的时延误差可表示为

      $$\Delta \tau = \frac{{\Delta \varphi }}{{\Delta \nu }}$$ (2)

      其中:$\Delta \nu $为ΔDOR最大频率范围。

      图  19  带通效应

      Figure 19.  Bandpass effect

      对中继星S波段ΔDOR约为7.5 MHz,对探测器X波段ΔDOR约为38.5 MHz,Δϕ= 5°导致的时延误差分别约为2 ns和0.5 ns。由于带通效应和设备有关,并且一般长期稳定,通过建立带通曲线在实际观测中可以大幅度减少其影响。

      探测器任务期间,VLBI总计开展了15次分时观测,每次分时观测都顺利实现探测器和中继星的任务切换。VLBI分时观测时,台站观测计划纲要切换时间小于10 min,VLBI中心数据处理切换时间小于15 min,VLBI系统可在30 min以内完成观测代码的切换,可在60 min之内完成双目标卫星的观测,满足70 min的任务指标要求。

    • 在探月工程“嫦娥4号”任务中,VLBI在整个实时任务期间测量的实时性指标都满足了工程指标1 min的要求,实际实时性水平优于45 s。在中继星任务中首次创新性使用S波段ΔDOR测量技术,时延测量精度优于2 ns,优于工程指标5 ns的要求,VLBI还实现了对探测器、中继星的分时观测技术,这种分时观测方式尚属国际首次。任务期间天马站还首次参加了中继星天线的在轨指向标定,标定精度优于主波束2%,为中继星高效进行地月中继通信服务做出了重要贡献。VLBI技术经过“嫦娥4号”任务后设备技术、观测及数据处理能力都得到进一步提升,这对我国后续测轨任务的成功实施打下了坚实的基础。

参考文献 (9)

目录

    /

    返回文章
    返回