中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CZ-8:长征火箭系列商业化与智慧化的先行者

宋征宇 吴义田 徐珊姝 陈晓飞 肖耘

宋征宇, 吴义田, 徐珊姝, 陈晓飞, 肖耘. CZ-8:长征火箭系列商业化与智慧化的先行者[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200009
引用本文: 宋征宇, 吴义田, 徐珊姝, 陈晓飞, 肖耘. CZ-8:长征火箭系列商业化与智慧化的先行者[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200009
SONG Zhengyu, WU Yitian, XU Shanshu, CHEN Xiaofei, XIAO Yun. CZ-8: The Forerunner of Long March Rocket Series on the Innovations of Commercialization and Intelligence[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200009
Citation: SONG Zhengyu, WU Yitian, XU Shanshu, CHEN Xiaofei, XIAO Yun. CZ-8: The Forerunner of Long March Rocket Series on the Innovations of Commercialization and Intelligence[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200009

CZ-8:长征火箭系列商业化与智慧化的先行者

doi: 10.15982/j.issn.2095-7777.2020.20200009
详细信息
    作者简介:

    宋征宇(1970– ),男,研究员,教授,博士生导师,主要研究方向:运载器总体设计技术、导航、制导与控制、动态轨迹优化、重复使用运载器技术通讯地址:北京 9200 信箱 1 分箱(100076)电话:(010)68282360 E-mail:song.zhengyu@spacechina.com

  • ● This article comprehensively expounds the development ideas and technical approaches of the LM-8 launch vehicle to the commercial launch market. ● Technical path of application of autonomous technology in the LM-8 launch vehicle. ● The overall scheme of cluster recycling,key technologies and implementation approaches.

CZ-8: The Forerunner of Long March Rocket Series on the Innovations of Commercialization and Intelligence

  • 摘要: 综述了CZ-8运载火箭的最新研究成果。CZ-8运载火箭充分继承了在役和新一代运载火箭的研制成果,以发射太阳同步轨道(700 ~1 000 km)卫星为主,并兼顾近地球轨道(Low Earth Orbit,LEO)和地球同步转移轨道(Geostationary Transfer Orbit,GTO)。CZ-8设计有组合型和融合型两种配置,可面向多种任务,尤其针对商业发射市场,在快捷制造、系统集成、快响发射、自主无人值守、简化对发射场要求等方面开展了大量创新性的实践,显著提升了竞争力。应对未来智慧火箭的目标,开展了上升段应对推力下降故障的动态轨迹规划、起飞漂移主动控制、发射窗口自主修正等自主技术的研究和应用;针对重复使用的需求,采用集束式回收方案进行关键技术攻关和验证,按照分步发展的策略,在大型轻质着陆机构、自主制导方法等方面取得了阶段性的进展。上述创新最终将CZ-8努力打造成为性价比高、易用性好、安全性高的新一代中型主力火箭。
    Highlights
    ● This article comprehensively expounds the development ideas and technical approaches of the LM-8 launch vehicle to the commercial launch market. ● Technical path of application of autonomous technology in the LM-8 launch vehicle. ● The overall scheme of cluster recycling,key technologies and implementation approaches.
  • 图  1  CZ-8运载火箭配置和运载能力

    Fig.  1  Configuration and carrying capacity of CZ-8 rocket

    图  2  不同高度SSO 轨道的运载能力

    Fig.  2  Carrying capacity of SSO orbit at different altitudes

    图  3  贮箱箱底成型方案对比

    Fig.  3  Comparison of tank dome forming schemes

    图  4  CZ-8 GNC控制组合

    Fig.  4  GNC control assembly of CZ-8

    图  5  CZ-8地面测发控系统功能框图

    Fig.  5  Functional block of CZ-8 test and launch control system

    图  6  CZ-8发射场主要工作流程

    Fig.  6  Work flow of CZ-8 at launch site

    图  7  正常和故障工况下的软件操作界面示意

    Fig.  7  Software user interface under normal and fault conditions

    图  8  救援轨道优化求解策略

    Fig.  8  Rescue orbit optimization solution strategy

    图  9  起飞漂移量仿真结果

    Fig.  9  Simulation results of takeoff drift

    图  10  零窗口发射示意图

    Fig.  10  Explanation of instantaneous launch window

    图  11  CZ-8R回收经济性分析

    Fig.  11  Economic analysis of CZ-8R recovery

    图  12  CZ-8R飞行剖面

    Fig.  12  CA-8R flight profile

    图  13  着陆机构(单套)实验样件

    Fig.  13  Landing mechanism(single set)test sample

    图  14  火箭垂直着陆示意图

    Fig.  14  Illustration of rocket vertical landing

    图  15  接入条件仿真

    Fig.  15  Access condition simulation

    表  1  典型发动机故障模式

    Table  1  Typical engine failure modes

    项目氧泵后氧
    泄漏/s
    燃气均流板
    堵塞*1
    涡轮喷嘴
    烧蚀*2
    氧泵效率
    下降*3
    推力/KN1 0401 0679761 102
    燃料泵出口
    压力/(MPa)
    31.0930.5322.7633.93
    涡轮转速
    (r·min–1
    16 81316 6431425617 589
    燃烧室压/(MPa)16.0116.2214.5116.87
    注:*1堵塞按70%计算;*2按烧蚀面积增大至1.5倍考虑;*3效率按下降10%计算。
    下载: 导出CSV
  • [1] BAHU J M. Ariane: CNES view for an evolving launch system family[C]//China Space Conference. Changsha: [s. n.]: 2019.
    [2] FOUST J. SpaceX revamps smallest rideshare program[EB/OL].(2019-08-29)[2020-03-08].https://spacenews.com/spacex-revamps-smallsat-rideshare-program/.
    [3] MIHARA Y, SATO A, KITAYAMA O, et al. The latest development status of H3[C]//69th International Astronautical Congress.Bremen, Germany: [s. n.], 2018.
    [4] UNDERHILLA K, BRETEAUB J, CARUANAC J N, et al. Preparing the future of European space transportation[C]//69th International Astronautical Congress.Bremen, Germany: [s. n.], 2018.
    [5] KUTTER B. Innovation & launch services for the next decade: advanced centaur capabilities and technologies[C]//69th International Astronautical Congress.Bremen, Germany: [s. n.], 2018.
    [6] PATZELT A, MERINO J, HEGELS J, et al. Ariane 6 —new aerostructures for the new European launcher[C]//68th International Astronautical Congress. Adelaide, Australia: [s. n.], 2017.
    [7] MERINO J, PATZELT A, STEINACHER A, et al. Ariane 6—Tanks & structure for the new European launcher[C]//Deutscher Luft-und Raumfahrtkongress. München, Germany: [s. n.], 2017.
    [8] PATZELT A, LUDWIG C, KAHNERT M, et al. CRONUS—Sandwich common bulkhead tank demonstrator[C]//6th European conference for aerospace sciences(EUCASS).Krakow, Poland: [s. n.], 2015.
    [9] VIETZE M, WEILAND S, MUNDT C. Quick design tool for stratification processes in cryogenic fuel tanks with focus on sandwich common bulkheads[C]//67th International Astronautical Congress. Guadalajara, Mexico: [s. n.], 2016.
    [10] PESTOTNIK S, KÉBREAU S, DRÖSE A, et al. ALM ISCAR-additive layer manufacturing of a redesigned ARIANE bracket—overview and status[C]//6th European conference for aerospace sciences(EUCASS). Krakow, Poland: [s. n.], 2015.
    [11] VVEDENSKY N, LIKHODED A, SIDOROV V, et al. “SOYUZ-2” LV structure optimization[C]//1st European conference for aerospace sciences(EUCASS).Moscow, Russia: [s. n.], 2005.
    [12] GUJRAL A, EMANUELSEN W A, GOYAL V K, et al. Launch system reuse[C]//69th International Astronautical Congress.Bremen, Germany: [s. n.], 2018.
    [13] RAMUSAT G, BRETEAU J, ACKERMANN J. An overview of the FLPP technology developments in structures for the European next generation launcher[C]. 1st European conference for aerospace sciences(EUCASS), Moscow, Russia: [s. n.], 2005.
    [14] SELINGER M. Air force eyes autonomous flight safety for all space launches[EB/OL].(2017)[2020-03-18]. https://www.defensedaily.com/air-force-eyes-autonomous-flight-safety-space-launches/air-force/.
    [15] BRISSETT W. SpaceX launch pioneered autonomous termination system[EB/OL].(2017)[2020-03-18]. http://www.airforcemag.com/DRArchive/Pages/2017/March%202017/March%2006%202017/SpaceX-Launch-Pioneered-Autonomous-Termination-System.aspx.
    [16] JEREZ L, MERKLI S, BENNANI S, et al. Forces-RTP: a tool for on-board real-time autonomous trajectory planning[C]//10th International ESA Conference on Guidance, Navigation & Control Systems, Salzburg, Austria: [s. n.], 2017.
    [17] FIDI C, DUFOUR J F. Deterministic ethernet for scalable modular launcher avionics[C]//AIAA Space, Long Beach, United States: AIAA, 2016.
    [18] ESA. Electronics and avionics[EB/OL].[2020-03-18].http://www.esa.int/Enabling_Support/Space_Transportation/New-Technologies/Electronics_and_Avionics.
    [19] ATLAS V.Launch services user’s guide[M].[S. l.]: United Launch Alliance, 2010.
    [20] SABLYNSKI R, PORDON R. A report on the flight of Delta Ⅱ's Redundant Inertial Flight Control Assembly(RIFCA)[C]//SABLYNSKI R, PORDON R. IEEE 1998 Position Location and Navigation Symposium.[S. l.]: IEEE, 1998.
    [21] MONCHAUX D, GAST P, SANGARE J. Avionic-X: a demonstrator for the next generation launcher avionics[C]//Embedded Real Time Software And Systems, ERTS2. Toulouse, Feance: [s. n.], 2012.
    [22] GEOHAGAN K W, BERNARD W P, STRICKLAND D J, et al. 6DOF testing of the SLS inertial navigation unit[C]//41st Annual guidance and control conference, Breckenridge.United States: [s. n.], 2018.
    [23] SHAUN P, KEN K. SLS flight software agile development process[C]//IEEE standard 1012 system, software and hardware verification and validation working group meeting.Huntsville, United States: IEEE, 2015.
    [24] SPACEX. Falcon 9 launch vehicle payload user’s guide, Rev 2[M].Hawthorne, NV: SpaceX, 2015.
    [25] RESTA P D, PILCHEN G, COULON D, et al. The Ariane 6 launch system development status[C]. 67th International Astronautical Congress, Guadalajara, Mexico: [s. n.], 2016.
    [26] Ariane 6 User’s Manual, Issue 1 Revision 0[M]. March, 2018.
    [27] WALKER M, WALKER W E, FIGUEROA F. Enabling autonomous propellant loading: providing situational awareness through model based reasoning[C]//62nd Machinery Failure Prevention Technology(MFPT)and international instrumentation symposium. Dayton, United States: [s. n.], 2016.
    [28] TORO J A, WILKINS, K N, WALKER M, et al. Autonomous operations system: development and application[C]//Annual Conference of the Prognostic and Health Management Society.Denver, Colorado, United States: [s. n.], 2016.
    [29] SBIR.STTR, America’s(seed fund. Autonomous Control Technologies(ACT)for ground operations[EB/OL].[2020-03-18]. https://www.sbir.gov/sbirsearch/detail/1547873?from=groupmessage&isappinstalled=0.
    [30] NASA.NASA technology roadmaps TA 13: ground and launch systems[R]. Washington, D C: NASA, 2015.
    [31] 张青松, 刘巧珍, 王晓林, 等. 低温火箭自主故障诊断和发射控制[J]. 计算机测量与控制(2月份刊出)

    ZHANG Q S, LIU Q Z, WANG X L, et al. Autonomous fault diagnosis and pre-launch control for cryogenic rocket[J]. Computer Measurement & Control
    [32] SAMPSON M. The next frontier: innovative launch services[C]//68th International Astronautical Congress, Adelaide, Australia: [s. n.], 2017.
    [33] 吕新广,宋征宇. 长征运载火箭制导方法[J]. 宇航学报,2017,38(9):895-902.

    LV X G,SONG Z Y. Guidance methods of Long-March launch vehicles[J]. Journal of Astronautics,2017,38(9):895-902.
    [34] VON DER PORTEN P, AHMAD N, HAWKINS M, et al. Powered explict guidance modifications & enhancement for space launch system Block-1 and Block-1B vehicles[C]//41st Guidance, Navigation, and Control Conference. Breckenridge: [s. n.], 2018.
    [35] YANOVA O V, AKOBIAN B G. Launcher mission risk reduction due to the advanced adaptive guidance algorithms[C]//67th International Astronautical Congress.Guadalajara, Mexico: [s. n.], 2016.
    [36] SONG Z Y. Intelligent and autonomous technology for launch vehicles[J]. Aerospace China,2018,19(2):3-15.
    [37] MONTENBRUCK O,GILL E. Satellite orbits - models,methods and applications[J]. Applied Mechanics Reviews,2002,55:2504-2510.
    [38] 宋征宇,王聪,巩庆海. 运载火箭上升段推力下降故障的自主轨迹规划方法[J]. 中国科学.信息科学,2019,49(11):1472-1487. doi:  10.1360/SSI-2019-0132

    SONG Z Y,WANG C,GONG Q H. Autonomous trajectory planning for launch vehicle under thrust drop failure[J]. Sci Sin Inform,2019,49(11):1472-1487. doi:  10.1360/SSI-2019-0132
    [39] ROGERS W F. Apollo experience report: lunar module landing gear subsystem[R].[S. l.]: NASA Johnson Space Center, 1972.
    [40] WANG D L, CUI Q F, LUO H J, et al. A landing buffer system for vertical takeoff and vertical landing reusable launch vehicle[C]//8th European conference for aerospace sciences(EUCASS).Madrid, Spain: [s. n.], 2019.
    [41] FREEMAN D C,TALAY T A,AUSTIN R E. Reusable launch vehicle technology program[J]. Acta Astronautica,1997,41(11):777-790. doi:  10.1016/S0094-5765(97)00197-5
    [42] KOBAYAKAWA T,KAWATO H,MOCHIZUKI K,et al. Abort recovery strategy for future vertical landing systems[J]. Acta Astronautica,2015,116:148-153. doi:  10.1016/j.actaastro.2015.06.012
    [43] ACIKMESE B, AUNG M, CASOLIVA J, et al. Flight testing of trajectories computed by G-FOLD: Fuel optimal large divert guidance algorithm for planetary landing[C]//AAS/AIAA spaceflight mechanics meeting.Kauai, United States: AIAA, 2013.
    [44] SCHARF D P, REGEHR M W, VAUGHAN G M, et al. Adapt demonstrations of onboard large-divert guidance with a VTVL rocket[C]//IEEE Aerospace Conference.Big Sky, USA: [s. n.], 2014..
    [45] SCHARF D P,ACIKMESE B,DUERI D,et al. Implementation and experimental demonstration of onboard powered-descent guidance[J]. Journal of Guidance,Control,and Dynamics,2016,40(2):213-229.
    [46] DUERI D,ACIKMESE B,SCHARF D P,et al. Customized real-time interior-point methods for onboard powered descent guidance[J]. Journal of Guidance,Control,and Dynamics,2016,40(2):197-212.
    [47] NASA.NASA technology roadmaps, TA9: entry, descent, and landing systems, TA 9.2.6 large divert guidance[R].[S. l.]: NASA, 2015. BLACKMORE L. Autonomous precision landing of space rockets[J].The Bridge, 2016, 4(46): 15-20.
    [48] 宋征宇,王聪. 运载火箭返回着陆在线轨迹规划技术发展[J]. 宇航总体技术,2019,3(6):1-12.

    SONG Z Y,WANG C. Development of online trajectory planning technology for launch vehicle return and landing[J]. Astronautical Systems Engineering Technology,2019,3(6):1-12.
  • [1] 陈上上, 关轶峰, 于萍, 李骥, 张晓文.  基于粒子群优化的月球陨石坑探测轨迹规划 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191031007
    [2] 林云成, 李立犇, 赵振家, 张荣荣, 金聪, 邹猛.  着陆器足垫冲击月壤动态行为离散元仿真分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190313002
    [3] 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明.  深空探测器自主控制技术综述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.002
    [4] 朱立颖, 叶志玲, 李玉庆, 付中梁, 徐勇.  小天体探测自主绕飞智能规划建模 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.05.007
    [5] 姜啸, 徐瑞, 陈俐均.  深空探测器动态约束规划中的外延约束过滤方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.06.010
    [6] 冀红霞, 宗红, 黄翔宇.  基于改进预测滤波的小天体精确着陆自主导航方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.03.013
    [7] 黄翔宇, 徐超, 胡荣海, 李茂登, 郭敏文, 胡锦昌.  火星精确定点着陆多信息融合自主导航与控制方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.006
    [8] 王汀, 郭延宁, 张瑶, 马广富.  基于模型预测控制的多约束火星精确着陆制导律研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.010
    [9] 刘延杰, 朱圣英, 崔平远.  小天体安全着陆与表面探测控制方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.009
    [10] 徐超, 王大轶, 黄翔宇.  基于陆标图像的火星精确着陆自主导航方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.009
    [11] 于正湜, 崔平远.  行星着陆自主导航与制导控制研究现状与趋势 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.006
    [12] 武长青, 徐瑞, 朱圣英.  基于对数势函数的深空探测器姿态规划与控制方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.04.011
    [13] 郑艺裕, 崔祜涛, 王晓芳.  附着小天体的动态面鲁棒制导与控制方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.02.009
    [14] 胡海静, 朱圣英, 崔平远.  基于Lyapunov函数的小天体软着陆障碍规避控制方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.02.008
    [15] 李爽, 陶婷, 江秀强, 张树瑜, 周杰.  月球软着陆动力下降制导控制技术综述与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.02.002
    [16] 王茜茜, 谢慕君, 李元春.  基于模糊参数优化的小行星软着陆控制方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.02.010
    [17] 吴超, 赵振华, 杨俊, 李世华, 郭雷.  基于约束预测控制的火星大气进入轨迹跟踪 . 深空探测学报(中英文),
    [18] 黄翔宇, 张洪华, 王大铁, 李骥, 关软峰, 王鹏基.  “嫦娥三号”探测器软着陆自主导航与制导技术 . 深空探测学报(中英文),
    [19] 王大铁, 李骥, 黄翔宇, 张洪华.  月球软着陆过程高精度自主导航避障方法 . 深空探测学报(中英文),
    [20] 崔平远, 高艾, 于正湜.  火星着陆自主导航方案研究进展 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 修回日期:  2020-05-17
  • 网络出版日期:  2020-09-30

CZ-8:长征火箭系列商业化与智慧化的先行者

doi: 10.15982/j.issn.2095-7777.2020.20200009
    作者简介:

    宋征宇(1970– ),男,研究员,教授,博士生导师,主要研究方向:运载器总体设计技术、导航、制导与控制、动态轨迹优化、重复使用运载器技术通讯地址:北京 9200 信箱 1 分箱(100076)电话:(010)68282360 E-mail:song.zhengyu@spacechina.com

  • ● This article comprehensively expounds the development ideas and technical approaches of the LM-8 launch vehicle to the commercial launch market. ● Technical path of application of autonomous technology in the LM-8 launch vehicle. ● The overall scheme of cluster recycling,key technologies and implementation approaches.

摘要: 综述了CZ-8运载火箭的最新研究成果。CZ-8运载火箭充分继承了在役和新一代运载火箭的研制成果,以发射太阳同步轨道(700 ~1 000 km)卫星为主,并兼顾近地球轨道(Low Earth Orbit,LEO)和地球同步转移轨道(Geostationary Transfer Orbit,GTO)。CZ-8设计有组合型和融合型两种配置,可面向多种任务,尤其针对商业发射市场,在快捷制造、系统集成、快响发射、自主无人值守、简化对发射场要求等方面开展了大量创新性的实践,显著提升了竞争力。应对未来智慧火箭的目标,开展了上升段应对推力下降故障的动态轨迹规划、起飞漂移主动控制、发射窗口自主修正等自主技术的研究和应用;针对重复使用的需求,采用集束式回收方案进行关键技术攻关和验证,按照分步发展的策略,在大型轻质着陆机构、自主制导方法等方面取得了阶段性的进展。上述创新最终将CZ-8努力打造成为性价比高、易用性好、安全性高的新一代中型主力火箭。

注释:
1)  ● This article comprehensively expounds the development ideas and technical approaches of the LM-8 launch vehicle to the commercial launch market. ● Technical path of application of autonomous technology in the LM-8 launch vehicle. ● The overall scheme of cluster recycling,key technologies and implementation approaches.

English Abstract

宋征宇, 吴义田, 徐珊姝, 陈晓飞, 肖耘. CZ-8:长征火箭系列商业化与智慧化的先行者[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200009
引用本文: 宋征宇, 吴义田, 徐珊姝, 陈晓飞, 肖耘. CZ-8:长征火箭系列商业化与智慧化的先行者[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20200009
SONG Zhengyu, WU Yitian, XU Shanshu, CHEN Xiaofei, XIAO Yun. CZ-8: The Forerunner of Long March Rocket Series on the Innovations of Commercialization and Intelligence[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200009
Citation: SONG Zhengyu, WU Yitian, XU Shanshu, CHEN Xiaofei, XIAO Yun. CZ-8: The Forerunner of Long March Rocket Series on the Innovations of Commercialization and Intelligence[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20200009
参考文献 (48)

返回顶部

目录

    /

    返回文章
    返回