Abstract:
Deep-space exploration missions have limited power options due to weight constraints and reduced light intensity. Lithium-fluorocarbon battery technology is considered a potentially viable option for future deep space probe power supplies. Tests on specific energy, specific heat capacity, calorific value, and low temperature and storage performance of lithium fluorocarbon batteries were carried out. The results show that lithium fluorocarbon batteries have obvious advantages of high specific energy. Its long storage life meets the needs for deep space probes with low self-discharge rates during months or even years of flight. For low-temperature applications, the low-temperature discharge performance is effectively improved by the use of composite electrodes. The trials of specific heat capacity and heat generation for lithium-fluoride carbon batteries provide essential data support for battery thermal simulation analysis.