中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adaptive Control for Space Greenhouse Light Assembly

Yu. Berkovich A. Buryak O. Ochkov O. Perevedentsev S. Smolyanina

Yu.Berkovich, A.Buryak, O.Ochkov, O.Perevedentsev, S.Smolyanina. 空间温室灯组件的自适应控制[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20191108001
引用本文: Yu.Berkovich, A.Buryak, O.Ochkov, O.Perevedentsev, S.Smolyanina. 空间温室灯组件的自适应控制[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20191108001
Reference format: BERKOVICH Y, BURYAK A, OCHKOV O, et al. Adaptive control for space greenhouse light assembly[J]. Journal of Deep Space Exploration, 2020, 7 (5) : 1-11 doi:  10.15982/j.issn.2095-7777.2020.20191108001
Citation: Reference format: BERKOVICH Y, BURYAK A, OCHKOV O, et al. Adaptive control for space greenhouse light assembly[J]. Journal of Deep Space Exploration, 2020, 7 (5) : 1-11 doi:  10.15982/j.issn.2095-7777.2020.20191108001

空间温室灯组件的自适应控制

doi: 10.15982/j.issn.2095-7777.2020.20191108001

Adaptive Control for Space Greenhouse Light Assembly

  • 摘要: 到目前为止,基于发光二极管(Light Emitting Diodes-based,LED)的照明器被广泛用于除自然光之外的温室植物照明,以及没有自然光的植物工厂。优化人工光照参数,如日光照积分和不同光谱成分的比值,可以显著降低生物生命支持系统(Biological Life Support Systems,BLSS)包括空间温室(Space Greenhouses,SG)中光栽培作物的生产成本。然而,由于缺乏关于窄带辐射引起的生理效应的信息,以及数学描述植物作物对LED照明参数变化的反应的复杂性,LED照明系统的优化一直受到限制。在人工照明的条件下,作物生产者通常力图建立一个恒定于整个生长季节的最佳光照制度。然而,有实验数据表明,随着植物年龄的增加,作物对光照制度的要求会发生变化。基于生物反馈的自适应搜索优化方法是改进作物LED照明参数的潜在途径。描述了建立于生物医学问题研究所(莫斯科,俄罗斯)用于大白菜栽培的基于红色和白色LED光源的自适应照明系统(Adaptive Lighting System,ALS)。其自适应控制程序实现了对实时支持最佳植物生长特性的当前照明参数的连续自动搜索。ALS包括一个封闭的生长室,带有基于红色和白色LED灯的光组件(Light Assembly,LA),并配有一个气体二氧化碳分析仪(Gas CO2 Analyzer,GA)。每一种发光二极管的光子通量密度(Photosynthetic photon flux density,PPFD)由微处理器(MicroProcessor,MP)中的程序相互独立控制。红外GA定期测量生长室内由作物的表观光合作用(Visible Photosynthesis,VF)引起的CO2浓度下降。MP接收来自遗传算法输出的信号,并计算作物的光合速率,以及当前的光照质量功能值。然后程序比较在当前时刻和上一步得到的优化准则值,并根据选择算法和LED电源电流的新值计算梯度的方向,使优化准则的值朝着正确的方向变化。此外,供电单元为各类型的LED链提供电流,LA变换植物的照明模式。我们用等效系统质量(Equivalent System Mass,ESM)的最小比值作为SG照明质量的标准,该值取决于植物的照明状况。SG单位种植面积等效质量和SG单位耗电量的成本系数在很大程度上取决于航天器设计和空间探测方案。根据文献,基于光子通量密度和作物光效率的等效系统质量估计值已经在一艘用于长期使用的月球基地的空间探测场景,有4名宇航员的航天器中计算出来。为了寻找植物生长过程中的当前最优光照参数,采用了梯度和单纯形算法。采用入射于作物茎尖的整体光子通量密度水平和红色与白色光通量密度的比值(因子X1和X2)作为优化因子。X1的调节范围为200~700 mol/(m2·s),X2的调节范围为0 ~ 1.5。通过对照实验比较使用ALS或最佳恒定LED照明时的等效系统质量来评估自适应照明系统的效果。根据月球基地考察的最小ESM准则(1),在植物生长第14 ~ 24天期间对大白菜作物光照进行自适应优化,使得SG等效质量节约了 14.9%。具有其它优化准则的类似系统可用于陆生植物工厂。
  • 图  1  Age drift of Chinese cabbage crop characteristics

    图  2  Functional diagram of an adaptive system for automatic crop LED lighting optimization; LED –light emitting diodes, PPFD – photosynthetic photon flux density

    图  3  Growth chamber with the Chinese cabbage crop in the experimental stand: 1 - LED illuminator, 2, 3 - blower of the growth chamber ventilation system, 4 - fans for air mixing, 5 - root module with the crop, 6 - weight platform with load cells, 7 - platform for regulating the distance between the crop and illuminator, 8, 9 - tubes for the nutrient solution supply

    图  4  Age drift of optimal specific ESM for Chinese cabbage vegetation in the space greenhouse for Lunar base

    表  1 

    Type of space
    expedition
    Airtight volume/
    (kg·m−3)
    Energy consumption,
    kg/kW
    Power consumption for
    cooling/(kg·kW−1)
    K1,/
    (kg·m−3)
    K2,/
    (kg·kW−1)
    1Flight in low Earth orbit66,7476,2163,966,7640,1
    2On the Lunar base45,254,060,045,2114
    3Transit Martian expedition5,283,321,35,2104,6
    4Martian visiting expedition20,886,966,720,8153,6
    下载: 导出CSV

    表  2 

    Ambient temperature/°C27,0 ± 1
    Relative air humidity/%50 ± 17
    Mineral nutrition techniqueHydroponics
    Nutrition solutionStandard Chesnokov’s solution with added micronutrients with concentration (700 ± 45) mg/l
    Lighting sourceWhite (4 200 K) and red (660 nm) LEDs
    PPFD at the shoot tips level/(μmol·m-2·s-1)500 ± 20
    CO2 concentration in air/ppm500~700
    下载: 导出CSV

    表  3 

    IndicatorControlExperiment
    Crop fresh weight per 1m2 of planting surface/kg0,93 ± 0,180,79 ± 0,20
    The dry matter content in the shoots/%10,1 ± 0,68,7 ± 0,4
    The leaf specific surface density, freshbiomas/(mg ·cm–2)87 ± 1385 ± 14
    Chlorophyll content per 1 dm2 of leaf surface/ mg5,5 ± 0,37,0 ± 0,9
    Carotenoids content per 1 dm2 of leaf surface/ mg1,3 ± 0,11,6 ± 0,2
    Ascorbic acid content per 100g of leaves fresh biomass/mg65 ± 614 ± 1,0
    Nitrate content per 1000 g of leaves fresh biomass/mg1 800 ± 3661 675 ± 345
    下载: 导出CSV
  • [1] ZABEL P, BAMSEY M, SCHUBERT D, et al. Review and analysis of plant growth chambers and greenhouse modules for space[C]//44th International Conference on Environmental Systems.Tucson, Arizona, United States: [s. l.], 2014.
    [2] BERKOVICH YU A, SMOLYANINA S O, KRIVOBOK N M, et al. Vegetable production facility as a part of a closed life support system in a Russian space flight scenario[J]. Advances in Space Research,2009,44: 70-176.
    [3] ROMANOV S, ZHELEZNYAKOV A G, TELEGIN A A, et al. Life support systems for crews on long-duration interplanetary missions[J]. Izvestiya RAN. Energetika (in Russian),2007,3: 57-74.
    [4] BERKOVICH YU A, KRIVOBOK N M, SMOLYANINA S O, et al. Space greenhouses: present and future[M]. Moscow: Slovo (in Russian), 2005: 368.
    [5] BERKOVICH YU A, KRIVOBOK N M, SINYAK Y., et al Developing a vitamin greenhouse for the life support system of the international space station and for future interplanetary missions[J]. Advances in Space Research,2004,34: 1552-1557. doi:  10.1016/j.asr.2004.06.006
    [6] ZEIDLER C, VRAKKING V, BAMSEY M, et al. Greenhouse module for space system: a lunar greenhouse design[J]. Open Agriculture,2017,2: 116-132.
    [7] JONES H W. Comparizon of bioregenerative and physical/chemical life support systems // ICES 2006-01-2082. 2006.
    [8] LEVRI J A, VACCARY D A, DRYSDALE A E. Theory and application of the equivalent system mass metric[J]. SAE technical paper 2000-01-2395.
    [9] DRYSDALE A, EWERT M, HANFORD A. Equivalent system mass studies of missions and concepts. 1999. SAE technical paper. 1999-01-2081.
    [10] KANG M, WANG F Y. From parallel plants to smart plants: intellegent control and management for plant growth[J]. Journal of Automatica Sinica,2017,4 (2) : 161-166. doi:  10.1109/JAS.2017.7510487
    [11] AVERCHEVA O V, BERKOVICH YU A, KONOVALOVA I O, et al. Optimizing LED lighting for space plant growth unit: Joint effects of photon flux density, red to white ratios and intermittent light pulses[J]. Life Sciences in Space Research,2016,11: 29-42. doi:  10.1016/j.lssr.2016.12.001
    [12] MOKRONOSOV A T. The relationship of photosynthesis and growth functions[M]. Photosynthesis and the Production Process. Moscow: Nauka (in Russian), 1988: 109-121.
    [13] RITCHIE J T, SINGH U, GODWIN D C, et al. Cereal growth, development and yield[M]. TSUJI G Y, HOOGENBOOM G, THORNTON P K, Eds. Understanding Options for Agricultural Production.Netherlands: Springer, 1998: 79-98.
    [14] GIJZEN H, HEUVELINK E, CHALLA H, et al. Hortisim: a model for greenhouse crops and greenhouse climate[J]. Acta Horticulturae,1998,456: 441-450.
    [15] MA Y, WEN M, GUO Y, et al. Parameter optimization and field validation of the functional-structural model GREENLAB for maize at different population densities[J]. Annals of Botany,2008,101 (8) : 1185-1194.
    [16] YAN H P, KANG M Z, DE REFFYE P, et al. Dynamic architectural plant model simulating resource-dependent growth[J]. Annals of Botany,2004,93 (5) : 591-602. doi:  10.1093/aob/mch078
    [17] EVERS J B, VOS J, YIN X, et al. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation[J]. Journal of Experimental Botany,2010,61 (8) : 2203-2216. doi:  10.1093/jxb/erq025
    [18] MEDINA-RUIZ C A, MERCADO-LUNA I A, SOTO-ZARAZUA G M, et al. Mathematical modeling on tomato plants: a review[J]. African Journal of Agricultural Research,2011,6 (33) : 6745-6749.
    [19] SPEETJENS S L, STIGTER J D, VAN STRATEN G. Towards an adaptive model for greenhouse control[J]. Computers and Electronics in Agriculture,2009,67 (1-2) : 1-8. doi:  10.1016/j.compag.2009.01.012
    [20] FAN X R., KANG M Z, HEUVELINK E, et al A knowledge-and-data-driven modeling approach for simulating plant growth: a case study on tomato growth[J]. Ecological Modelling,2015,312: 363-373. doi:  10.1016/j.ecolmodel.2015.06.006
    [21] BERKOVICH Y, KONOVALOVA I O, SMOLYANINA S O, et al. LED crop illumination inside space greenhouses[J]. REACH - Reviews in Human Space Exploration,2017,6: 11-24.
    [22] BERKOVICH Y, KONOVALOVA I O, EROKHIN A N, et al. LED lighting optimization as applied to a vitamin space plant growth facility[J]. Life Sciences in Space Research,2019,20: 93-100. doi:  10.1016/j.lssr.2018.09.004
    [23] AVERCHEVA O, BERKOVICH Y, SMOLYANINA S., et al Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue-red LED assembly designed for space agriculture[J]. Advances in Space Research,2014,53: 1574-1581. doi:  10.1016/j.asr.2014.03.003
    [24] KORBUT V L. Optimization of plant productivity in biotechnical systems.[M]. Problems of optimization in biotechnical systems using computer technology.Moscow (in Russian), 1981: 5-32.
    [25] GACHINSKY E, DROZDOV A, CHERKASHIN M. Adaptation in continuous systems of automatic search[M]. Moscow, Russian: [s. n], 1991.
    [26] KARMANOV V G. Mathematical programming[M]. Moscow, Russian: [s. n], 1986.
    [27] CHARLES-EDWARDS D A. The mathematics of photosynthesis and productivity[M]. New York: Academic Press, 1981.
    [28] BERKOVICHYU A, OCHKOV O A, PEREVEDENTSEV O V, et al. Selection of algorithms for adaptive optimization of plant photosynthesis in space greenhouses[J]. Aviakosmicheskaya i Ekologicheskaya Meditsina (in Russian),2019,53 (2) : 85-92.
    [29] DRYSDALE A, BUGBEE B. Optimizing plant habitat for space: a novel approach to plant growth on the Moon[J]. SAE technical paper 2003-01-2360.
    [30] DRYSDALE A, MAXWELL S, EWERT M, et al. System analysis of life support for long duration missions[J]. SAE technical paper 2000-01-2394.
    [31] THIMIJAN R W, HEINS R D. Photometric, radiometric and quantum light units of measure: a review of procedures for interconversion[J]. HortScience,1983,18 (6) : 818-822.
    [32] BERKOVICH YU A, OCHKOV O A, PEREVEDENTSEV O V. Substantiation of the approach to adaptive optimization of light-emitting diode illumination of crops in vitamin greenhouses within the life support system for space crews[J]. Aviakosmicheskaya i Ekologicheskaya Meditsina (in Russian),2018,52 (6) : 86-94.
    [33] DRYSDALE A, NAKAMURA T, YORIO N, et al. Use of sunlight in a bioregenerative life support system - Equivalent system mass calculations[J]. Advances in Space Research,2008,42: 1929-1943. doi:  10.1016/j.asr.2008.09.020
  • 加载中
计量
  • 文章访问数:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-08
  • 修回日期:  2020-09-01

Adaptive Control for Space Greenhouse Light Assembly

doi: 10.15982/j.issn.2095-7777.2020.20191108001

摘要: 到目前为止,基于发光二极管(Light Emitting Diodes-based,LED)的照明器被广泛用于除自然光之外的温室植物照明,以及没有自然光的植物工厂。优化人工光照参数,如日光照积分和不同光谱成分的比值,可以显著降低生物生命支持系统(Biological Life Support Systems,BLSS)包括空间温室(Space Greenhouses,SG)中光栽培作物的生产成本。然而,由于缺乏关于窄带辐射引起的生理效应的信息,以及数学描述植物作物对LED照明参数变化的反应的复杂性,LED照明系统的优化一直受到限制。在人工照明的条件下,作物生产者通常力图建立一个恒定于整个生长季节的最佳光照制度。然而,有实验数据表明,随着植物年龄的增加,作物对光照制度的要求会发生变化。基于生物反馈的自适应搜索优化方法是改进作物LED照明参数的潜在途径。描述了建立于生物医学问题研究所(莫斯科,俄罗斯)用于大白菜栽培的基于红色和白色LED光源的自适应照明系统(Adaptive Lighting System,ALS)。其自适应控制程序实现了对实时支持最佳植物生长特性的当前照明参数的连续自动搜索。ALS包括一个封闭的生长室,带有基于红色和白色LED灯的光组件(Light Assembly,LA),并配有一个气体二氧化碳分析仪(Gas CO2 Analyzer,GA)。每一种发光二极管的光子通量密度(Photosynthetic photon flux density,PPFD)由微处理器(MicroProcessor,MP)中的程序相互独立控制。红外GA定期测量生长室内由作物的表观光合作用(Visible Photosynthesis,VF)引起的CO2浓度下降。MP接收来自遗传算法输出的信号,并计算作物的光合速率,以及当前的光照质量功能值。然后程序比较在当前时刻和上一步得到的优化准则值,并根据选择算法和LED电源电流的新值计算梯度的方向,使优化准则的值朝着正确的方向变化。此外,供电单元为各类型的LED链提供电流,LA变换植物的照明模式。我们用等效系统质量(Equivalent System Mass,ESM)的最小比值作为SG照明质量的标准,该值取决于植物的照明状况。SG单位种植面积等效质量和SG单位耗电量的成本系数在很大程度上取决于航天器设计和空间探测方案。根据文献,基于光子通量密度和作物光效率的等效系统质量估计值已经在一艘用于长期使用的月球基地的空间探测场景,有4名宇航员的航天器中计算出来。为了寻找植物生长过程中的当前最优光照参数,采用了梯度和单纯形算法。采用入射于作物茎尖的整体光子通量密度水平和红色与白色光通量密度的比值(因子X1和X2)作为优化因子。X1的调节范围为200~700 mol/(m2·s),X2的调节范围为0 ~ 1.5。通过对照实验比较使用ALS或最佳恒定LED照明时的等效系统质量来评估自适应照明系统的效果。根据月球基地考察的最小ESM准则(1),在植物生长第14 ~ 24天期间对大白菜作物光照进行自适应优化,使得SG等效质量节约了 14.9%。具有其它优化准则的类似系统可用于陆生植物工厂。

English Abstract

Yu.Berkovich, A.Buryak, O.Ochkov, O.Perevedentsev, S.Smolyanina. 空间温室灯组件的自适应控制[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20191108001
引用本文: Yu.Berkovich, A.Buryak, O.Ochkov, O.Perevedentsev, S.Smolyanina. 空间温室灯组件的自适应控制[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20191108001
Reference format: BERKOVICH Y, BURYAK A, OCHKOV O, et al. Adaptive control for space greenhouse light assembly[J]. Journal of Deep Space Exploration, 2020, 7 (5) : 1-11 doi:  10.15982/j.issn.2095-7777.2020.20191108001
Citation: Reference format: BERKOVICH Y, BURYAK A, OCHKOV O, et al. Adaptive control for space greenhouse light assembly[J]. Journal of Deep Space Exploration, 2020, 7 (5) : 1-11 doi:  10.15982/j.issn.2095-7777.2020.20191108001
参考文献 (33)

返回顶部

目录

    /

    返回文章
    返回