中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星探测任务着陆区选址和地质分析

王越 王彪 王汛 潘辰安 姚佩雯 李晨帆 李勃

王越, 王彪, 王汛, 潘辰安, 姚佩雯, 李晨帆, 李勃. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190708001
引用本文: 王越, 王彪, 王汛, 潘辰安, 姚佩雯, 李晨帆, 李勃. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190708001
WANG Yue, WANG Biao, WANG Xun, PAN Chenan, YAO Peiwen, LI Chenfan, LI Bo. Analysis and Selection of Landing Areas for Mars Mission[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190708001
Citation: WANG Yue, WANG Biao, WANG Xun, PAN Chenan, YAO Peiwen, LI Chenfan, LI Bo. Analysis and Selection of Landing Areas for Mars Mission[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190708001

火星探测任务着陆区选址和地质分析

doi: 10.15982/j.issn.2095-7777.2020.20190708001
详细信息
    作者简介:

    王越(1997– ),男,硕士研究生,主要研究方向:行星地质学。通讯地址:山东省威海市环翠区文化西路180号(264209)电话:13061116308 E-mail:1021657970@qq.com

  • ● The priority landing area of China 2020 Mars Mission was selected by combining the engineering constraints and the scientific significance of the research. A total of 8 priority landing areas were selected. ● The geological background of priority landing area was studied and their priority degree as the final landing area was evaluated. ● The three landing areas of e-g are considered as the highest priority landing areas because of their flat terrain,location at the junction of geological units and detection of the distribution of hydrous minerals.
  • 中图分类号: P185.4+6;P161.1+4;P354;P352.6

Analysis and Selection of Landing Areas for Mars Mission

  • 摘要: 以火星地形、影像数据和火星地质单元图为基础,综合工程条件约束和科学意义,选择我国火星探测任务的优先着陆区并进行地质背景研究。基于火星表面地形数据提取预选着陆区的地形因子(包括坡度和粗糙度),并结合着陆区的地面承重能力和高程纬度条件选出符合工程约束条件的区域;基于生命和地质两个研究重点,选取具有相应科学意义的地区作为优先着陆区,共选出了8个优先着陆区,其中a、b优先着陆区位于克里斯平原,c~g优先着陆区位于伊希地平原,h优先着陆区位于尼本席斯平原;对选出的区域进行地质背景研究,评定各个区域作为最终着陆区的优先程度,其中e~g 3个着陆区因为其地形平坦、位于地质单元交界处且探测到含水矿物分布,因此被作为优先度最高的火星预选着陆区。
    Highlights
    ● The priority landing area of China 2020 Mars Mission was selected by combining the engineering constraints and the scientific significance of the research. A total of 8 priority landing areas were selected. ● The geological background of priority landing area was studied and their priority degree as the final landing area was evaluated. ● The three landing areas of e-g are considered as the highest priority landing areas because of their flat terrain,location at the junction of geological units and detection of the distribution of hydrous minerals.
  • 图  1  全火星数字高程模型彩色渲染图

    注:我国2020年火星探测任务预选着陆区用黑框表示,本文研究区域用红框表示。

    Fig.  1  The color rendering map of the digital elevation model of the whole Mars

    图  2  我国2020火星探测任务研究区域1和2

    Fig.  2  Study areas 1 and 2 of the China 2020 Mars mission

    图  3  全火星日间MGS-TES热惯量图

    Fig.  3  Martian global dayside MGS-TES map

    图  4  全火星TES热反照率图

    Fig.  4  Martian global TES bolometric albedo map

    图  5  火星地质单元图,编号3292

    Fig.  5  Geological unit map of Mars,SIM 3292

    图  6  研究区域2的高程重分类图

    Fig.  6  Elevation reclassification map of research area 2

    图  7  坡度重分类图

    注:底图为火星数字高程模型彩色渲染图。

    Fig.  7  Slope reclassification map

    图  8  均方根偏差重分类图。

    注:底图为全火星数字高程模型彩色渲染图。

    Fig.  8  Root mean square deviation reclassification map.

    图  9  研究区域的地面承重能力重分类图

    注:按高、中、低3个等级对研究区域内火星表面承重能力进行划分,底图是火星DEM数据。

    Fig.  9  Ground bearing capacity reclassification map of the research area

    图  10  火星表面含水矿物的分布图

    Fig.  10  Map of the distribution of hydrous minerals on the surface of Mars

    图  11  研究区域内水合矿物种类及分布

    Fig.  11  Types and distribution of hydrated minerals in the research areas

    图  12  中国2020火星探测任务着陆区选择和地质背景研究流程图

    Fig.  12  Flowchart of China 2020 Mars mission landing areas selection and geological background research

    图  13  优先着陆区的位置分布

    :黑色实线为地质单元的分界线,黑色虚线为地质单元可能的分界线。黑色带菱形线为皱脊(Wrinkle ridge),黑色带三角线为悬崖(Scarp),蓝色线为河道(Channel),黄色线为火山口边缘(Crater rim),红色带点线为溪谷(Rille),红色箭头线为叶状流(Lobate flow)。

    Fig.  13  Distribution of priority landing areas

    图  14  研究区域内地貌和地质单元图

    Fig.  14  Geomorphic and geological unit maps of the research areas

    图  15  优先着陆区a和b内的地形地貌

    :黑线为地质单元分界线,黄线为皱脊,蓝线为外流河道,红色椭圆为优先着陆区范围,蓝色圆点为层状硅酸盐分布,底图是MOLA数据叠加在THEMIS昼间热红外图像上

    Fig.  15  Topography within the priority landing area a and b

    图  16  优先着陆区c-g内的地形地貌

    :黑色实线为地质单元分界线,黑色虚线为地质单元可能的分界线,黄色带菱形线为皱脊,蓝线为河道轴线,红色(椭)圆为优先着陆区范围,蓝色圆点为层状硅酸盐分布,绿色圆点为碳酸盐分布,底图是MOLA数据叠加在THEMIS昼间热红外图像上。

    Fig.  16  Topography in the priority landing areas c~g

    图  17  优先着陆区h内的地形地貌

    :黑色虚线为地质单元可能的分界线,红色矩形为优先着陆区范围,蓝色圆点为层状硅酸盐分布,底图是MOLA数据叠加在THEMIS昼间热红外图像上。

    Fig.  17  Topography within the priority landing area h

    表  1  成功着陆任务不同范围区域的均方根偏差

    Table  1  Root mean square deviations in different areas of the successful landing mission

    火星探测器范围/km均方根偏差(10–3火星探测器范围/km均方根偏差(10–3
    Mars 211.26~7.28MER Spirit11.26~2.54
    50.82~13.7450.31~11.65
    100.82~144.92100~37.40
    Mars 614.65~9.60MER Opportunity10.31~0.83
    54.65~15.4750~2.73
    101.56~23.06100~9.15
    Viking 113.48~5.19Phoenix12.02~3.77
    50.42~9.0051.87~6.47
    100.42~19.72100.96~7.17
    Viking 211.31~1.94MSL Curiosity12.23~4.64
    50.47~7.0451.15~60.29
    100.31~8.48100.94~122.71
    Mars Pathfinder12.87~3.09
    51.20~4.97
    100.31~22.26
    下载: 导出CSV

    表  2  地面承重能力判定公式

    Table  2  Ground bearing capacity determination formula

    公式栅格单元值地面承重能力
    热惯量 > 100 tiu 且 反照率 < 0.250
    热惯量 < 100 tiu 或 反照率 > 0.251
    热惯量 < 100 tiu 且 反照率 > 0.252
    下载: 导出CSV

    表  3  我国火星探测任务着陆区工程约束条件及阈值

    Table  3  Engineering constraints and thresholds for the landing areas of Mars Mission

    参数限制条件说明
    高程< –2 km有足够的大气在降落时减速
    纬度0°~30°N降落时的通讯,迎检工作温度
    地形起伏< 120 m降落过程中相关仪器的正常运行和动力下降阶段燃料充足
    坡度< 7.38°由地形起伏限制的坡度,应避开火星车可能安全着陆但无法穿越的区域
    地形粗糙度(均方根偏差)< 0.009 6反映地表形态的量化指标,粗糙度越大,表明表面越粗糙,越不适合火星车着陆
    地面承重热惯量 > 100 tiu,反照率 < 0.25火星车着陆不会陷在松软的物质里
    下载: 导出CSV

    表  4  优先着陆区的位置分布和形状

    Table  4  The location and shape of the priority landing area

    优先着陆区编号中心坐标范围形状
    a26.80°N,39.51°W50.8 km × 25.4 km东西向椭圆
    b22.32°N,33.35°W60.3 km × 21.2 km东西向椭圆
    c20.16°N,79.56°E直径34.5 km
    d18.85°N,77.52°E直径23.4 km
    e6.86°N,81.79°E75.8 km × 29.5 km近东西向椭圆
    f4.25°N,84.90°E70 km × 30 km近东西向椭圆
    g11.26°N,94.42°E68.6 km × 35.3 km近东西向椭圆
    h121.75°E,10.19°N66.5 km × 29.3 km南北向矩形
    下载: 导出CSV
  • [1] 叶斌龙,赵健楠,黄俊. 美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考[J]. 深空探测学报,2017,4(4):310-324.

    YE B L,ZHAO J N,HUANG J. The status of NASA Mars 2020 rover landing site selection and some thoughts on the landing part of China 2020 Mars mission[J]. Journal of Deep Space Exploration,2017,4(4):310-324.
    [2] 徐青,耿迅,蓝朝桢,等. 火星地形测绘研究综述[J]. 深空探测学报,2014,1(01):28-35.

    XU Q,GENG X,LAN C Z,et al. Review of Mars topographic mapping[J]. Journal of Deep Space Exploration,2014,1(01):28-35.
    [3] 董捷,王闯,赵洋. 基于工程约束的火星着陆区选择[J]. 深空探测学报,2016,3(2):134-139.

    DONG J,WANG C,ZHAO Y. Selection of the Martian landing site based on the engineering constraints[J]. Journal of Deep Space Exploration,2016,3(2):134-139.
    [4] YE P J,SUN Z Z,RAO W,et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China(Technological Sciences),2017(5):5-13.
    [5] PUTZIG N E,MELLON M T. Apparent thermal inertia and the surface heterogeneity of Mars[J]. Icarus,2007,191(1):68-94. doi:  10.1016/j.icarus.2007.05.013
    [6] CHRISTENSEN P R,BANDFIELD J L,HAMILTON V E,et al. Mars global surveyor thermal emission spectrometer experiment:Investigation description and surface science results[J]. Journal of Geophysical Research Planets,2001,106(E10):23823-23871. doi:  10.1029/2000JE001370
    [7] 刘学军,龚健雅,周启鸣,等. 基于DEM坡度坡向算法精度的分析研究[J]. 测绘学报,2004,33(3):258-263. doi:  10.3321/j.issn:1001-1595.2004.03.014

    LIU X J,GONG J Y,ZHOU Q M,et al. A study of accuracy and algorithms for calculating slope and aspect based on grid Digital Elevation Model(DEM)[J]. Acta Geodaetica et Cartographica Sinica,2004,33(3):258-263. doi:  10.3321/j.issn:1001-1595.2004.03.014
    [8] 江冲亚,方红亮,魏珊珊. 地表粗糙度参数化研究综述[J]. 地球科学进展,2012,27(3):292-303.

    JIANG C Y,FANG H L,WEI S S. Review of land surface roughness parameterizations study[J]. Advances in Earth Science,2012,27(3):292-303.
    [9] SHEPARD M K,CAMPBELL B A,BULMER M H,et al. The roughness of natural terrain:a planetary and remote sensing perspective[J]. Journal of Geophysical Research,2001,106(E12):32777-32795. doi:  10.1029/2000JE001429
    [10] RUFF S W,CHRISTENSEN P R. Bright and dark regions on Mars:particle size and mineralogical characteristics based on thermal emission spectrometer data[J]. Journal of Geophysical Research,2002,107(E12):5127.
    [11] KIEFFER H H,MARTIN T Z,PETERFREUND A R,et al. Thermal and albedo mapping of Mars during the Viking primary mission[J]. Journal of Geophysical Research,1977,82(28):4249-4291. doi:  10.1029/JS082i028p04249
    [12] 史建魁,刘振兴,程征伟. 火星探测研究结果分析[J]. 科技导报,2011,29(10):64-70.

    SHI J K,LIU Z X,CHENG Z W. An analysis of results of the Mars exploration[J]. Science & Technology Review,2011,29(10):64-70.
    [13] GOLOMBEK M,GRANT J,KIPP D,et al. Selection of the Mars Science Laboratory landing site[J]. Space Science Reviews,2012,170(1-4):641-737. doi:  10.1007/s11214-012-9916-y
    [14] MELLON M T, FERGASON R L, PUTZIG N E. The martian surface: the thermal inertia of the surface of Mars[J]. The Martian Surface - Composition, Mineralogy, and Physical Properties, 2008, -1: 399.
    [15] CHRISTENSEN P R,MOORE H J. The martian surface layer[J]. Mars,1992:686-729.
    [16] PUTZIG N E,MELLON M T,KRETKE K A,et al. Global thermal inertia and surface properties of Mars from the MGS mapping mission[J]. Icarus,2005,173(2):325-341. doi:  10.1016/j.icarus.2004.08.017
    [17] 芶盛,岳宗玉,邸凯昌,等. 火星表面含水矿物探测进展[J]. 遥感学报,2017,21(4):531-548.

    GOU S,YUE Z Y,DI K C,et al. Advances in aqueous minerals detection on Martian surface[J]. Journal of Remote Sensing,2017,21(4):531-548.
    [18] CARTER J,POULET F,BIBRING J P,et al. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers:updated global view[J]. Journal of Geophysical Research Planets,2013,118(4):831-858. doi:  10.1029/2012JE004145
    [19] EHLMANN B L,MUSTARD J F,MURCHIE S L,et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature,2011,479(7371):53-60. doi:  10.1038/nature10582
    [20] BIBRING J P,LANGEVIN Y,MUSTARD J F,et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data[J]. Science,2006,312(5772):400-404. doi:  10.1126/science.1122659
    [21] CARR M H. The surface of Mars[M]. Cambridge: Cambridge University Press, 2006.
    [22] JAKOSKY B M,PHILLIPS R J. Mars’ volatile and climate history[J]. nature,2001,412(6843):237-244. doi:  10.1038/35084184
    [23] BARLOW N G,BOYCE J M,COSTARD F M,et al. Standardizing the nomenclature of martian impact crater ejecta morphologies[J]. Journal of Geophysical Research,2000,105(E11):26733. doi:  10.1029/2000JE001258
    [24] CARR M H,CRUMPLER L S,CUTTS J A,et al. Martian impact craters and emplacement of ejecta by surface flow[J]. Journal of Geophysical Research,1977,82(28):4055-4065. doi:  10.1029/JS082i028p04055
    [25] STEWART S T, O'KEEFE J D, AHRENS T J. The relationship between rampart crater morphologies and the amount of subsurface ice[C]// Lunar & Planetary Science Conference. Lunar and Planetary Science Conference, 2001.
    [26] SCHULTZ P H. Atmospheric effects on ejecta emplacement[J]. Journal of Geophysical Research,1992,97(E7):11623. doi:  10.1029/92JE00613
    [27] BARNOUIN-JHA O S,SCHULTZ P H,LEVER J H. Investigating the interactions between an atmosphere and an ejecta curtain:1. Wind tunnel tests[J]. Journal of Geophysical Research,1999,104(E11):27105. doi:  10.1029/1999JE001026
    [28] BARNOUIN-JHA O S,SCHULTZ P H,LEVER J H. Investigating the interactions between an atmosphere and an ejecta curtain:2. Numerical experiments[J]. Journal of Geophysical Research,1999,104(E11):27117. doi:  10.1029/1999JE001027
    [29] RODRÍGUEZ J A P,TANAKA K L,KARGEL J S,et al. Formation and disruption of aquifers in southwestern Chryse Planitia,Mars[J]. Icarus,2007,191(2):545-567. doi:  10.1016/j.icarus.2007.05.021
    [30] KOMATSU G,OKUBO C H,WRAY J J,et al. Small edifice features in Chryse Planitia,Mars:assessment of a mud volcano hypothesis[J]. Icarus,2016,268:56-75. doi:  10.1016/j.icarus.2015.12.032
    [31] GHENT R R,ANDERSON S W,PITHAWALA T M. The formation of small cones in Isidis Planitia,Mars through mobilization of pyroclastic surge deposits[J]. Icarus,2012,217(1):169-183.
    [32] EHLMANN B L,MUSTARD J F,FASSETT C I,et al. Clay minerals in delta deposits and organic preserva-tion potential on Mars[J]. Nature Geoscience,2008,1(6):355-358.
    [33] ERKELING G,REISS D,HIESINGER H,et al. Landscape formation at the Deuteronilus contact in southern Isidis Planitia,Mars:implications for an Isidis Sea?[J]. Icarus,2014,242:329-351.
    [34] DE PABLO M Á,Pacifici A. Geomorphological evidence of water level changes in Nepenthes Mensae,Mars[J]. Icarus,2008,196(2):667-671.
    [35] WERNER S C,TANAKA K L,SKINNER J A. Mars:the evolutionary history of the northern lowlands based on crater counting and geologic mapping[J]. Planetary & Space Science,2011,59(11-12):1143-1165.
  • [1] 张熇, 杜宇, 李飞, 张弘, 马继楠, 盛丽艳, 吴克.  月球南极探测着陆工程选址建议 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191003002
    [2] 姜啸, 徐瑞, 陈俐均.  深空探测器动态约束规划中的外延约束过滤方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.06.010
    [3] 刘建军, 苏彦, 左维, 任鑫, 孔德庆, 温卫斌, 张洪波, 李春来.  中国首次火星探测任务地面应用系统 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.003
    [4] 耿言, 周继时, 李莎, 付中梁, 孟林智, 刘建军, 王海鹏.  我国首次火星探测任务 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.05.001
    [5] 姜啸, 徐瑞, 朱圣英.  基于约束可满足的深空探测任务规划方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.6.008
    [6] 牟乃夏, 李洁, 孟治国, 张灵先, 刘文宝.  基于多因子综合评估的月球探测软着陆区域及最佳巡航路线分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.01.010
    [7] 孟治国, 李翠, 平劲松, 黄倩, 蔡占川, AlexanderGusev.  月面冯·卡门撞击坑的着陆选址和科学探测目标浅析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.01.001
    [8] 朱岩, 白云飞, 王连国, 沈卫华, 张宝明, 王蔚, 周盛雨, 杜庆国, 陈春红.  中国首次火星探测工程有效载荷总体设计 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.06.002
    [9] 叶斌龙, 赵健楠, 黄俊.  美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.04.002
    [10] 彭松, 贾阳, 陈百超.  火星车绝对定位方法选择 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.007
    [11] 徐超, 王大轶, 黄翔宇.  基于陆标图像的火星精确着陆自主导航方法研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.009
    [12] 葛丹桐, 崔平远.  地外天体着陆点选择综述与展望 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.03.001
    [13] 沈自才, 代巍, 白羽, 刘荣强, 丁义刚, 刘业楠.  载人深空探测任务的空间环境工程关键问题 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.001
    [14] 饶炜, 孙泽洲, 孟林智, 王闯, 吉龙.  火星着陆探测任务关键环节技术途径分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.004
    [15] 王汀, 郭延宁, 张瑶, 马广富.  基于模型预测控制的多约束火星精确着陆制导律研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.010
    [16] 杨懿, 金双根, 薛岩松.  利用CRISM数据探测火星表面含水矿物及其演化 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.015
    [17] 董捷, 王闯, 赵洋.  基于工程约束的火星着陆区选择 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.02.006
    [18] 陈德相, 徐文明, 杜智远, 徐瑞.  航天器任务规划中资源约束的可分配处理方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.02.013
    [19] 崔平远, 高艾, 于正湜.  火星着陆自主导航方案研究进展 . 深空探测学报(中英文),
    [20] 吴伟仁, 于登云.  “嫦娥3号”月球软着陆工程中的关键技术 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-08
  • 修回日期:  2020-01-15
  • 网络出版日期:  2020-09-14

火星探测任务着陆区选址和地质分析

doi: 10.15982/j.issn.2095-7777.2020.20190708001
    作者简介:

    王越(1997– ),男,硕士研究生,主要研究方向:行星地质学。通讯地址:山东省威海市环翠区文化西路180号(264209)电话:13061116308 E-mail:1021657970@qq.com

  • ● The priority landing area of China 2020 Mars Mission was selected by combining the engineering constraints and the scientific significance of the research. A total of 8 priority landing areas were selected. ● The geological background of priority landing area was studied and their priority degree as the final landing area was evaluated. ● The three landing areas of e-g are considered as the highest priority landing areas because of their flat terrain,location at the junction of geological units and detection of the distribution of hydrous minerals.
  • 中图分类号: P185.4+6;P161.1+4;P354;P352.6

摘要: 以火星地形、影像数据和火星地质单元图为基础,综合工程条件约束和科学意义,选择我国火星探测任务的优先着陆区并进行地质背景研究。基于火星表面地形数据提取预选着陆区的地形因子(包括坡度和粗糙度),并结合着陆区的地面承重能力和高程纬度条件选出符合工程约束条件的区域;基于生命和地质两个研究重点,选取具有相应科学意义的地区作为优先着陆区,共选出了8个优先着陆区,其中a、b优先着陆区位于克里斯平原,c~g优先着陆区位于伊希地平原,h优先着陆区位于尼本席斯平原;对选出的区域进行地质背景研究,评定各个区域作为最终着陆区的优先程度,其中e~g 3个着陆区因为其地形平坦、位于地质单元交界处且探测到含水矿物分布,因此被作为优先度最高的火星预选着陆区。

注释:
1)  ● The priority landing area of China 2020 Mars Mission was selected by combining the engineering constraints and the scientific significance of the research. A total of 8 priority landing areas were selected. ● The geological background of priority landing area was studied and their priority degree as the final landing area was evaluated. ● The three landing areas of e-g are considered as the highest priority landing areas because of their flat terrain,location at the junction of geological units and detection of the distribution of hydrous minerals.

English Abstract

王越, 王彪, 王汛, 潘辰安, 姚佩雯, 李晨帆, 李勃. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190708001
引用本文: 王越, 王彪, 王汛, 潘辰安, 姚佩雯, 李晨帆, 李勃. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190708001
WANG Yue, WANG Biao, WANG Xun, PAN Chenan, YAO Peiwen, LI Chenfan, LI Bo. Analysis and Selection of Landing Areas for Mars Mission[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190708001
Citation: WANG Yue, WANG Biao, WANG Xun, PAN Chenan, YAO Peiwen, LI Chenfan, LI Bo. Analysis and Selection of Landing Areas for Mars Mission[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190708001
参考文献 (35)

返回顶部

目录

    /

    返回文章
    返回