中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间甚低频太阳射电Ⅲ型爆研究进展

谭宝林 谭程明 黄静 陈林杰

谭宝林, 谭程明, 黄静, 陈林杰. 空间甚低频太阳射电Ⅲ型爆研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190227002
引用本文: 谭宝林, 谭程明, 黄静, 陈林杰. 空间甚低频太阳射电Ⅲ型爆研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190227002
TAN Baolin, TAN Chengming, HUANG Jing, CHNEN Linjie. Research Advances of Solar Radio Type Ⅲ Bursts at Space Very Low Frequencies[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190227002
Citation: TAN Baolin, TAN Chengming, HUANG Jing, CHNEN Linjie. Research Advances of Solar Radio Type Ⅲ Bursts at Space Very Low Frequencies[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190227002

空间甚低频太阳射电Ⅲ型爆研究进展

doi: 10.15982/j.issn.2095-7777.2020.20190227002
基金项目: 国家自然科学基金资助项目(11433006,11573039,11661161015,11790301)
详细信息
    作者简介:

    谭宝林(1966− ),男,研究员,博士生导师,等离子体天体物理学首席教授,主要研究方向:太阳物理学、太阳射电天文学和等离子体天体物理。通讯地址:北京市朝阳区大屯路20号甲中国科学院国家天文台(100101)电话:(010)64860323 E-mail:bltan@nao.cas.cn

  • 中图分类号: V19

Research Advances of Solar Radio Type Ⅲ Bursts at Space Very Low Frequencies

  • 摘要: 太阳耀斑和日冕物质抛射是太阳系所发生的最猛烈的爆发事件,能向行星际空间释放出三大类扰动源:强烈的电磁波辐射增强、抛出大量磁化等离子体云团、发射巨量的非热高能粒子流。它们在行星际空间产生剧烈扰动,传播到近地空间时,将触发一系列灾害性空间天气事件,严重干扰各种高技术系统的安全运行。其中,与太阳活动密切相关的非热高能粒子流是产生灾害性空间天气事件最主要的驱动源之一。太阳非热高能粒子流的主要观测特征便是具有快速频率漂移特征的射电Ⅲ型爆。但是,当它们传播到超过太阳表面以上5~10倍太阳半径的行星际空间以后,由于等离子体密度非常稀薄,辐射频率降低到大约30 MHz以下的空间甚低频波段(SVLF),这时地基望远镜已经无法给出有效探测和追踪。空间或月基甚低频太阳射电探测器可以对频率为0.1~80 MHz的射电辐射信号进行频谱观测,在该频段发现的射电Ⅲ型爆能有效探测和跟踪非热高能粒子流在广阔的行星际空间中的传播和演变特征,为灾害性空间天气事件预报提供直接依据。主要介绍了国际上在空间甚低频波段太阳射电Ⅲ型爆的观测和研究进展和存在的主要问题,并讨论了空间甚低频射电探测器的观测数据在太阳射电Ⅲ型爆研究方面的主要科学目标和前景。
  • 图  1  SWAVES观测到的一例射电III型爆事件

    Fig.  1  A solar radio type III burst observed by SWAVES[27]

    图  2  Phoenix4射电频谱仪、Nancay十米波射电频谱仪和WIND/WAVES射电探测器在2014年2月16日获得的一例超宽带射电III型爆的综合频谱图[29]

    Fig.  2  A synoptic spectrogram of a type III radio burst with super-wide frequency band observed be Phoenix 4 decimeter spectrometer,Nancay decameter array and WIND/WAVES on 2014 February 14[29]

    图  3  LOFAR阵列对低频太阳射电III型爆的观测[30]

    Fig.  3  Observations of a low frequency type III radio burst by LOFAR[30]

    图  4  LOFAR观测的低频太阳射电III型爆的精细结构,显示被行星际空间湍流调制的特征

    Fig.  4  The fine structures of low frequency Type III radio burst observed by LOFAR,which shows the modulation by interplanetary turbulence[31].

  • [1] HUDSON H S. Global properties of solar flares[J]. Space Science Reviews,2011,158(1):5-41. doi:  10.1007/s11214-010-9721-4
    [2] FLETCHER L,DENNIS B R,HUDSON HS,et al. An observational overview of solar flares[J]. Space Science Reviews,2011,159:19-106. doi:  10.1007/s11214-010-9701-8
    [3] AULANIER G,DÉMOULIN P,SCHRIJVER C J,et al. The standard flare model in three dimensions. II. Upper limit on solar flare energy[J]. ,2012,549(1):419-419.
    [4] SCHWENN R. Space weather:the solar perspective[J]. Living Reviews in Solar Phys,2006,3:2.
    [5] PULKKINEN T. Space weather:terrestrial perspective[J]. Living Reviews in Solar Phys,2007,4:1.
    [6] 汪景琇,季海生. 空间天气驱动源—太阳风暴研究[J]. 中国科学-地球科学,2013,43:883-911.

    WANG J X,JI H S. Recent advances in solar storm studies in China[J]. Science China-Earth Science,2013,43:883-911.
    [7] GOPALSWAMY N,MÄKELÄ P. Long-duration low-frequency type iii bursts and solar energetic particle events[J]. The Astrophysical Journal,2010,721:L62-L66. doi:  10.1088/2041-8205/721/1/L62
    [8] WINTER L M,LEDBETTER K. Type II and Type III radio bursts and their correlation with solar energetic proton events[J]. The Astrophysical Journal,2015,809:105. doi:  10.1088/0004-637X/809/1/105
    [9] CANE H V,STONE R G. Type II solar radio bursts,interplanetary shocks,and energetic particle events[J]. The Astrophysical Journal,1984,282:339-344. doi:  10.1086/162207
    [10] MANN G,CLASSEN T,AURASS H. Characteristics of coronal shock waves and solar type II radio bursts[J]. A&A,1995,295:775.
    [11] CANE H V,ERICKSON W C. Solar type II radio bursts and IP type II events[J]. The Astrophysical Journal,2005,623:1180-1194. doi:  10.1086/428820
    [12] LIN R P,POTTER D W,GURNETT D A,et al. Energetic electrons and plasma waves associated with a solar type III radio burst[J]. The Astrophysical Journal,1981,251:L364-L373. doi:  10.1086/159471
    [13] DULK G A. Radio emission from the Sun and stars[J]. Annual Review of Astronomy & Astrophysics,1985,23:169-224.
    [14] BASTIAN T S,BENZ A O,GARY D E. Radio emission from solar flares[J]. Annual Review of Astronomy & Astrophysics,1998,36:131.
    [15] FAINBERG J,STONE R G. Type III solar radio burst storms observed at low frequencies[J]. Solar Physics,1970,15:222. doi:  10.1007/BF00149487
    [16] KAISER M L. The solar elongation distribution of low-frequency radio bursts[J]. Solar Physics,1975,45:181. doi:  10.1007/BF00152230
    [17] CAROUBALOS C,STEINBERG J L. Evidence of solar burst directivity at 169 MHz from simultaneous ground based and deep space observations (STEREO-1 preliminary results)[J]. Astronomy & Astrophysics,1974,32:245.
    [18] DULK G A,STEINBERG J L,LECACHEUX A,et al. The visibility of type III radio bursts originating behind the sun[J]. A&A,1985,150:L28.
    [19] LECACHEUX A,STEINBERG J L,HOANG S,et al. Characteristics of type III bursts in the solar wind from simultaneous observations on board ISEE-3 and Voyager[J]. Astronomy & Astrophysics,1989,217:237.
    [20] HOANG S,POQUERUSSE M,BOUGERET J L. The directivity of solar kilometric type III bursts:ulysses-artemis observations in and out of the ecliptic plane[J]. Solar Physics,1997,172:307. doi:  10.1023/A:1004956913131
    [21] REID H A S,RATCLIFFE H. A review of solar type III radio bursts[J]. Research in Astronomy and Astrophysics,2014,8:773.
    [22] ALVAREZ H,HADDOCK F T. Decay time of type III solar bursts observed at kilometric wavelengths[J]. Solar Physics,1973,30:175. doi:  10.1007/BF00156186
    [23] TAN B L,KARLICKÝ M,MÉSZÁROSOVÁ H,et al. Diagnosing the source region of a solar burst on 26 September 2011 by using microwave type-III pairs[J]. Solar Physics,2016,291:2407. doi:  10.1007/s11207-016-0986-y
    [24] TAN B L,MÉSZÁROSOVÁ H,KARLICKÝ M,et al. Microwave type III pair bursts in solar flares[J]. The Astrophysical Journal,2016,819:42. doi:  10.3847/0004-637X/819/1/42
    [25] TAN B L,KARLICKÝ M,MÉSZÁROSOVÁ H,et al. Diagnosing physical conditions near the flare energy-release sites from observations of solar microwave type III bursts[J]. Research in Astronomy and Astrophysics,2016,16:82.
    [26] REINER M J,GOETZ K,FAINBERG J,et al. Multipoint observations of solar type III radio bursts from STEREO and wind[J]. Solar Physics,2009,259:255. doi:  10.1007/s11207-009-9404-z
    [27] THEJAPPA G,MACDOWALL R J. A langmuir solitons in solar type III radio bursts:STEREO observations[J]. The Astrophysical Journal,2018,864:122. doi:  10.3847/1538-4357/aad5e4
    [28] HUANG J,TAN B L. Microwave Bursts with fine structures in the decay phase of a solar flare[J]. The Astrophysical Journal,2012,745:186. doi:  10.1088/0004-637X/745/2/186
    [29] REID H A S,KONTAR E P. Stopping frequency of type III solar radio bursts in expanding magnetic flux tubes[J]. Astronomy & Astrophysics,2015,577:A124.
    [30] MOROSAN D E,GALLAGHER P T,ZUCCA P.,et al LOFAR tied-array imaging of Type III solar radio bursts[J]. Astronomy & Astrophysics,2014,568:A67.
    [31] CHEN X Y,KONTAR E P,YU S J.,et al Fine structures of solar radio type III bursts and their possible relationship with coronal density turbulence[J]. The Astrophysical Journal,2018,856:73. doi:  10.3847/1538-4357/aaa9bf
    [32] 谭宝林,程俊,谭程明,等. 尖峰爆发标度律及其对新一代太阳射电望远镜参数的约束[J]. 天文学报,2018,59(4):37.

    TAN B L,CHENG J,TAN C M,et al. Scaling-laws of radio spike bursts and their constraints on new solar radio telescopes[J]. Acta Astronomica Sinica,2018,59(4):37.
  • [1] 石海平, 陈燕, 贾阳, 屈严, 刘治钢, 王文强, 彭松.  太阳电池阵火星环境发电建模仿真 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20200042
    [2] 王文强, 杨洪东, 杨广, 王佳禹, 吴庆, 顾春杰.  太阳电池阵深空探测适应性设计概论 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191101003
    [3] 严俊, 张海燕.  500米口径球面射电望远镜(FAST)主要应用目标概述 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190618003
    [4] 高冠男, 汪敏, 董亮, 郭少杰.  空间甚低频太阳II型射电暴研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190222001
    [5] 宁晓琳, 桂明臻, 孙晓函, 刘劲, 吴伟仁.  一种基于太阳震荡时间延迟量测的自主天文导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.013
    [6] 王馨悦, 张爱兵, 荆涛, 孔令高, 张珅毅.  近月空间带电粒子环境——“嫦娥1号”“嫦娥2号”观测结果 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.002
    [7] 宁晓琳, 晁雯.  一种基于太阳自转轴观测角的新型天文导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.003
    [8] 王赤, 张贤国, 徐欣锋, 孙越强.  中国月球及深空空间环境探测 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.001
    [9] 敖先志, 刘四清, 沈华, 王晶晶, 胡骏翔, 李刚.  2 AU以内的“渐进型”太阳高能粒子事件模拟 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.007
    [10] 吴迪, 陈纾, 陈龙江, 叶志龙, 郑循江.  基于SiP技术的单片集成数字式太阳敏感器 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.01.012
    [11] 张吉栋, 孟治国, 朱蕴哲, 曾昭发, 平劲松.  基于LOLA数据的冯·卡门撞击坑太阳辐射研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.01.002
    [12] 纪奕才, 赵博, 方广有, 平劲松, 吴伟仁, 宁远明, 卢伟, 周斌.  在月球背面进行低频射电天文观测的关键技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.008
    [13] 邬静云, 高有涛.  利用绳系太阳帆减缓小行星自转的技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.007
    [14] 张建琴, 徐建明, 贾巍, 邱宝贵, 肖杰.  深空探测太阳电池阵应用及关键技术分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.001
    [15] 胡海岩.  太阳帆航天器的关键技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.005
    [16] 曾祥远, 龚胜平, 李俊峰, 蒋方华, 宝音贺西.  应用太阳帆悬停探测哑铃形小行星 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.007
    [17] 贾巍, 倪家伟, 黄三玻, 宗魏, 肖杰, 王训春, 池卫英.  火星尘埃对太阳电池阵的影响与电帘除尘研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.04.010
    [18] 贺晶, 龚胜平, 李俊峰.  利用逃逸能量的太阳帆最快交会轨迹优化 . 深空探测学报(中英文),
    [19] 郑永春, 欧阳自远.  太阳系探测的发展趋势与科学问题分析 . 深空探测学报(中英文),
    [20] 倪彦硕, 宝音贺西, 李俊峰.  考虑太阳摄动的小行星附近轨道动力学 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-20
  • 修回日期:  2019-04-23
  • 网络出版日期:  2020-09-24

空间甚低频太阳射电Ⅲ型爆研究进展

doi: 10.15982/j.issn.2095-7777.2020.20190227002
    基金项目:  国家自然科学基金资助项目(11433006,11573039,11661161015,11790301)
    作者简介:

    谭宝林(1966− ),男,研究员,博士生导师,等离子体天体物理学首席教授,主要研究方向:太阳物理学、太阳射电天文学和等离子体天体物理。通讯地址:北京市朝阳区大屯路20号甲中国科学院国家天文台(100101)电话:(010)64860323 E-mail:bltan@nao.cas.cn

  • 中图分类号: V19

摘要: 太阳耀斑和日冕物质抛射是太阳系所发生的最猛烈的爆发事件,能向行星际空间释放出三大类扰动源:强烈的电磁波辐射增强、抛出大量磁化等离子体云团、发射巨量的非热高能粒子流。它们在行星际空间产生剧烈扰动,传播到近地空间时,将触发一系列灾害性空间天气事件,严重干扰各种高技术系统的安全运行。其中,与太阳活动密切相关的非热高能粒子流是产生灾害性空间天气事件最主要的驱动源之一。太阳非热高能粒子流的主要观测特征便是具有快速频率漂移特征的射电Ⅲ型爆。但是,当它们传播到超过太阳表面以上5~10倍太阳半径的行星际空间以后,由于等离子体密度非常稀薄,辐射频率降低到大约30 MHz以下的空间甚低频波段(SVLF),这时地基望远镜已经无法给出有效探测和追踪。空间或月基甚低频太阳射电探测器可以对频率为0.1~80 MHz的射电辐射信号进行频谱观测,在该频段发现的射电Ⅲ型爆能有效探测和跟踪非热高能粒子流在广阔的行星际空间中的传播和演变特征,为灾害性空间天气事件预报提供直接依据。主要介绍了国际上在空间甚低频波段太阳射电Ⅲ型爆的观测和研究进展和存在的主要问题,并讨论了空间甚低频射电探测器的观测数据在太阳射电Ⅲ型爆研究方面的主要科学目标和前景。

English Abstract

谭宝林, 谭程明, 黄静, 陈林杰. 空间甚低频太阳射电Ⅲ型爆研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190227002
引用本文: 谭宝林, 谭程明, 黄静, 陈林杰. 空间甚低频太阳射电Ⅲ型爆研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190227002
TAN Baolin, TAN Chengming, HUANG Jing, CHNEN Linjie. Research Advances of Solar Radio Type Ⅲ Bursts at Space Very Low Frequencies[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190227002
Citation: TAN Baolin, TAN Chengming, HUANG Jing, CHNEN Linjie. Research Advances of Solar Radio Type Ⅲ Bursts at Space Very Low Frequencies[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190227002
参考文献 (32)

返回顶部

目录

    /

    返回文章
    返回