中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间甚低频太阳II型射电暴研究进展

高冠男 汪敏 董亮 郭少杰

高冠男, 汪敏, 董亮, 郭少杰. 空间甚低频太阳II型射电暴研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190222001
引用本文: 高冠男, 汪敏, 董亮, 郭少杰. 空间甚低频太阳II型射电暴研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190222001
GAO Guannan, WANG Min, DONG Liang, GUO Shaojie. Advances in Space VLF Type II Solar Radio Bursts[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190222001
Citation: GAO Guannan, WANG Min, DONG Liang, GUO Shaojie. Advances in Space VLF Type II Solar Radio Bursts[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190222001

空间甚低频太阳II型射电暴研究进展

doi: 10.15982/j.issn.2095-7777.2020.20190222001
基金项目: 国家自然科学基金资助项目(11941003,11663007,11703089,U1831201,41764007);中国科学院“西部之光”人才培养计划
详细信息
    作者简介:

    高冠男(1982– ),女,副研究员,主要研究方向:太阳射电,空间天气。通讯地址:云南省昆明市东郊凤凰山云南天文台(650216)电话:(0871)63920882 E-mail:ggn@ynao.ac.cn

    汪敏(1966– ),男,研究员,博士生导师,主要研究方向:太阳射电,射电天文技术。通讯地址:云南省昆明市东郊凤凰山云南天文台(650216)电话:(0871)63920866 E-mail:wm@ynao.ac.cn

    董亮(1982– ),男,高级工程师/客座教授,主要研究方向:射电天文技术,空间天气-导航系统影响。通讯地址:云南省昆明市东郊凤凰山云南天文台(650216)电话:(0871)63920860 E-mail:dongliang@ynao.ac.cn

    郭少杰(1987– ),男,助理研究员,主要研究方向:低频射电阵。通讯地址:云南省昆明市东郊凤凰山云南天文台(650216)电话:(0871)63920860 E-mail:guosj891025@ynao.ac.cn

  • ● The physical mechanism,history,research progress of metric and inter-planetary(IP)type II solar radio bursts are introduced. ● The relationship between IP type II radio bursts and space weather(geomagnetic storms,solar energetic particle events,etc.)is introduced. ● The space VLF observation equipment are introduced,especially the space radio spectrometers of Change-4.

Advances in Space VLF Type II Solar Radio Bursts

  • 摘要: 耀斑和日冕物质抛射(Solar flares and coronal Mass Ejections,CME)是产生灾害性空间天气的源扰动。II型射电暴是CME驱动的激波在日冕和行星际空间中运动引起电磁波辐射的结果。以研究太阳物理和空间天气预警预报为背景,对II型射电暴特别是甚低频II型射电暴的频谱特征以及物理成因进行分析,认为甚低频II型射电暴不但可以用于估计CME激波的运动速度、诊断日冕磁场等物理参数,还可以为空间天气预警预报方面提供参考。研究结果可以为空间甚低频射电观测设备的科学研究及应用方面提供有益的参考。
    Highlights
    ● The physical mechanism,history,research progress of metric and inter-planetary(IP)type II solar radio bursts are introduced. ● The relationship between IP type II radio bursts and space weather(geomagnetic storms,solar energetic particle events,etc.)is introduced. ● The space VLF observation equipment are introduced,especially the space radio spectrometers of Change-4.
  • 图  1  射电爆发频谱示意图[5]

    Fig.  1  Schematic dynamic spectrum of a solar radio burst[5]

    图  2  日本HiRAS频谱仪(上)和云南天文台米波射电频谱仪(下)观测到的米波II型射电暴举例[14]

    Fig.  2  A Type II solar radio burst from HiRAS and YNAO[14]

    图  3  (a)2013年10月26日II型射电暴的基频和二次谐频结构都具有分裂带结构(F,Fa和H,Ha)和多带结构(黑色箭头指出)(b)LOFAR成像观测各个频率成分所处的日冕区域

    Fig.  3  Dynamic spectrum of the type II radio burst observed on 2013 Oct 26,showing band-splitting in both the fundamental(F and Fa)and the harmonic lanes(H and Ha)and a series of multi-lanes(indicated by the black arrows). Running-difference image of the CME observed with SOHO/LASCO(09:36-09:24 UT)with superposed contours of the radio sources[25]

    图  4  II型射电暴上叠加的射电精细结构[27]

    Fig.  4  IP type II solar radio bursts with fine structures[27].

    图  5  当CME发生时空间射电频谱仪观测到的行星际III型和II型射电暴[28]

    Fig.  5  Interplanetary type III and II solar radio bursts with CME observed by WIND/WAVES,STEREO/WAVES(A/B)[28]

  • [1] LIN J. Energetics and propagation of coronal mass ejections in different plasma environments[J]. Chinese Journal of Astronomy and Astrophysics,2002,2:539-556. doi:  10.1088/1009-9271/2/6/539
    [2] LIN J,SOON W,BALIUNAS S L. Theories of solar eruptions:a review[J]. New Astronomy Reviews,2003,47(2):53-84. doi:  10.1016/S1387-6473(02)00271-3
    [3] GARY D E, KELLER C U. Solar and space weather radiophysics[M]. Dordrecht :Kluwer Academic Publishers, 2004.
    [4] 甘为群,颜毅华,黄宇. 2016—2030年我国空间太阳物理发展的若干思考[J]. 中国科学,2019,49(49):059602.

    GAN W Q,YAN Y H,HUANG Y. Prospect for space solar physics in 2016—2030[J]. Scientia Sinica Physica,Mechanica & Astronomica,2019,49(49):059602.
    [5] DULK G A. Radio emission from the Sun and stars[J]. Annual Review of Astronomy and Astrophysics,1985,23:169-224. doi:  10.1146/annurev.aa.23.090185.001125
    [6] DULK G A,LEBLANC Y,BOUGERET J L. Type Ⅱ shock and CME from the corona to 1 AU[J]. Geophysical Research letters,1999,26(15):2331-2334. doi:  10.1029/1999GL900454
    [7] VASANTH V,UMAPATHY S,VRŠNAK B,et al. Investigation of the Coronal Magnetic Field Using a Type Ⅱ Solar Radio Burst[J]. Solar Physics,2014,289(1):251-261. doi:  10.1007/s11207-013-0318-4
    [8] WINTER L M,LEDBETTER K. Type Ⅱ and type Ⅲ radio bursts and their correlation with solar energetic proton events[J]. The Astrophysical Journal,2015,809(1):105. doi:  10.1088/0004-637X/809/1/105
    [9] DING L G,WANG Z W,FENG L. Is the enhancement of type Ⅱ radio bursts during CME interactions related to the associated solar energetic particle event?[J]. Research in Astronomy and Astrophysics,2019,19(1):005. doi:  10.1088/1674-4527/19/1/5
    [10] 高冠男,林隽,汪敏,等. 太阳米波和分米波Ⅱ型、Ⅲ型射电暴及其精细结构观测研究进展[J]. 天文学进展,2011,1(1):35-47.

    GAO G N,LIN J,WANG M,et al. Research and observation of and type Ⅲ solar radio metric and decimetric type Ⅱ bursts with fine structures[J]. Progress in Astronomy,2011,1(1):35-47.
    [11] PAYNE-SCOTT R,YABSLEY D E,BOLTON J G. Relative time of arrival of bursts of solar noise on different radio frequencies[J]. Nature,1947,160(4060):256-257.
    [12] MCLEAN D J, LABRUM N R. Solar radiophysics: studies of emission from the sun at the metre wavelengths[M]. Cambridge: Cambridge University Press, 1985.
    [13] LIN J,MANCUSO S,VOURLIDAS A. Theoretical investigation of the Onsets of type Ⅱ radio bursts during solar eruptions[J]. The Astrophysical Journal,2006,649(2):1110-1123. doi:  10.1086/506599
    [14] GAO G N,WANG M,WU N,et al. The broken lane of a type Ⅱ radio burst caused by collision of a coronal shock with a flare current sheet by collision of a corona shock with a flare current sheet[J]. Solar Physics,2016,291(11):3369-3384. doi:  10.1007/s11207-016-1007-x
    [15] MALITSON H H,FAINBERG J,STONE R G. Observation of a type Ⅱ solar radio burst to 37R[J]. Astrophysical Letters,1973,14:111.
    [16] CANE H V,STONE R G. Type Ⅱ solar radio bursts,interplanetary shocks,and energetic particle events[J]. Astrophysical Journal,1984,282:339-344. doi:  10.1086/162207
    [17] MUJIBER RAHMAN A,UMAPATHY S,SHANMUGARAJU A.,et al Solar and interplanetary parameters of CMEs with and without type Ⅱ radio bursts[J]. Advances in Space Research,2012,50(4):516-525. doi:  10.1016/j.asr.2012.05.003
    [18] LEBLANC Y,DULK G A,BOUGERET J L. Tracing the electron density from the corona to 1 AU[J]. Solar Physics,1998,183(1):165-180. doi:  10.1023/A:1005049730506
    [19] MANCUSO S,FRASSATI F,BEMPORAD A,et al. Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio and EUV observations:a different take on the diagnostics of coronal magnetic fields[J]. Astronomy & Astrophysics,2019,624:L2.
    [20] KISHORE P,RAMESH R,HARIHARAN K,et al. Constraining the solar coronal magnetic field strength using split-band type Ⅱ radio burst observations[J]. The Astrophysical Journal,2016,832:59. doi:  10.3847/0004-637X/832/1/59
    [21] BASTIAN T S. NgVLA observations of the solar wind,science with a next generation very large array[J]. ASP Conference Series,2018,517:87.
    [22] KOOI J E,FISCHER P D BUFFO J J,et al. VLA measurements of faraday rotation through coronal mass ejections[J]. Solar Physics,2017,292:56. doi:  10.1007/s11207-017-1074-7
    [23] TIM B, JAMES C, JUSTIN K, et al. Astro2020: decadal survey on astronomy and astrophysics[EB/OL].[2020-05-22]. https://www.nationalacademies.org/our-work/decadal-survey-on-astronomy-and-astrophysics-2020-astro2020.
    [24] NICOLINA C,KONTAR EDUARD P,HOLMAN GORDON D,et al. CME-driven shock and type Ⅱ solar radio burst band splitting[J]. The Astrophysical Journal,2018,868:79. doi:  10.3847/1538-4357/aae9e5
    [25] ZUCCA P,MOROSAN D E,ROUILLARD A P,et al. Shock location and CME 3D reconstruction of a solar type Ⅱ radio burst with LOFAR[J]. Astronomy & Astrophysics,2018,615:A89.
    [26] DU G H,KONG X L,CHEN Y,et al. An observational revisit of band-split solar type-Ⅱ radio bursts[J]. The Astrophysical Journal,2015,81(1):52.
    [27] CHERNOV G P,KAISER M L,BOUGERET J L,et al. Fine structure of solar radio bursts observed at decametric and hectometric waves[J]. Solar Physics,2007,241(1):145-169. doi:  10.1007/s11207-007-0258-y
    [28] MÄKELÄ P,GOPALSWAMY N,REINER M J,et al. Source regions of the type Ⅱ radio burst observed during a CME-CME interaction on 2013 May 22[J]. The Astrophysical Journal,2016,827(2):141. doi:  10.3847/0004-637X/827/2/141
    [29] MÄKELÄ P,GOPALSWAMY N,AKIYAMA S. Direction-finding analysis of the 2012 July 6 type Ⅱ solar radio burst at low frequencies[J]. The Astrophysical Journal,2018,867(1):40. doi:  10.3847/1538-4357/aae2b6
    [30] HEGEDUS ALEXANDER M, KASPER JUSTIN C, MANCHESTER WARD B.Tracking solar type Ⅱ bursts with space based radio interferometers[C]// American Astronomical Society, AAS Meeting #232.[S. l.]: AAS,
    [31] MACDOWALL R J, KLIMAS A J, LENGYEL-FREY D, et al.Comparison of interplanetary type Ⅱ radio burst observations by ISEE-3, Ulysses and Wind with Applications to Space Weather Prediction[C]//31st ESLAB Symposium.Noordwijk, Netherlands: ESA, 1997.
    [32] GOPALSWAMY N. Solar and geospace connections of energetic particle events[J]. Geophysical Research Letters,2003,30(12):321-337.
    [33] GOPALSWAMY N,YASHIRO S,AKIYAMA S,et al. Coronal mass ejections,type Ⅱ radio bursts,and solar energetic particle events in the SOHO era[J]. Annales Geophysicae,2008,26(10):3033-3047. doi:  10.5194/angeo-26-3033-2008
    [34] REAMES DONALD V. The two sources of solar energetic particles[J]. Space Science Reviews,2013,175(1-4):53-92. doi:  10.1007/s11214-013-9958-9
    [35] WINTER L M,LEDBETTER K. Type Ⅱ and type Ⅲ radio bursts and their correlation with solar energetic proton events[J]. The Astrophysical Journal,2015,809(1):105. doi:  10.1088/0004-637X/809/1/105
    [36] SWALWELL B,DALLA S,WALSH R W. Solar energetic particle forecasting algorithms and associated false alarms[J]. Solar Physics,2017,292(11):173. doi:  10.1007/s11207-017-1196-y
    [37] SMART D F,SHEA M A. A simplified model for timing the arrival of solar flare‐initiated shocks[J]. Journal of Geophysical Research,1985,90:183-190. doi:  10.1029/JA090iA01p00183
    [38] SMITH Z,DRYER M,ORT E,et al. Performance of interplanetary shock prediction models:STOA and ISPM[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2000,62(14):1265-1274. doi:  10.1016/S1364-6826(00)00082-1
    [39] DRYER M,FRY C D,SUN W,et al. Prediction in real time of the 2000 July 14 heliospheric shock wave and its companions during the 'Bastille' epoch[J]. Solar Physics,2001,204(1/2):265-284. doi:  10.1023/A:1014200719867
    [40] FENG X S,ZHAO X H. A new prediction method for the arrival time of interplanetary shocks[J]. Solar Physics,2006,238(1):167-186. doi:  10.1007/s11207-006-0185-3
    [41] MANOHARAN P K,ANANTHAKRISHNAN S,DRYER M,et al. Solar wind velocity and normalized scintillation index from single-station IPS observations[J]. Solar Physics,1995,156(2):377-393. doi:  10.1007/BF00670233
    [42] JANARDHAN P,BALASUBRAMANIAN V,ANANTHAKRISHNAN S,et al. Travelling interplanetary disturbances detected using interplanetary scintillation at 327 MHz[J]. Solar Physics,1996,166(2):379-401. doi:  10.1007/BF00149405
    [43] CREMADES H,ST CYR O C,KAISER M L. A tool to improve space weather forecasts:Kilometric radio emissions from Wind/WAVES[J]. SPACE WEATHER,2007,5(8):S08001.
    [44] STONE R G,BOUGERET J L,CALDWELL J,et al. The Unified radio and plasma wave investigation[J]. Astronomy and Astrophysics Supplement Series,1992,92(291).
    [45] LENGYEL-FREY D,THEJAPPA G,MACDOWALL R J,et al. Ulysses observations of wave activity at interplanetary shocks and implications for type Ⅱ radio bursts[J]. Journal of Geophysical Research,1997,102(A2):2611-2622. doi:  10.1029/96JA02871
    [46] BOUGERET J L,KAISER M L,KELLOGG P J,et al. Waves:the radio and plasma wave investigation on wind spacecraft[J]. Space Science Review,1995,71(1-4):231-263. doi:  10.1007/BF00751331
    [47] BOUGERET J L,GOETZ K,KAISER M L,et al. SWAVES:the radio and plasma wave investigation on the STEREO mission[J]. Space Science Review,2008,136(1-4):487-528. doi:  10.1007/s11214-007-9298-8
    [48] NASA.Solar Orbiter[EB/OL].(2020-02)[2020-05-22]. https://science.nasa.gov/missions/solar-orbiter/.
    [49] KASPER JUSTIN C,ROBERT A,GERRY A,et. al Solar Wind Electrons Alphas and Protons(SWEAP)investigation:design of the solar wind and coronal plasma instrument suite for solar probe plus[J]. Space Science Reviews,2016,204(1-4):131-186. doi:  10.1007/s11214-015-0206-3
    [50] BALE S D,GOETZ K,HARVEY P R,et al. The FIELDS instrument suite for solar probe plus. measuring the coronal plasma and magnetic field,plasma waves and turbulence,and radio signatures of solar transients[J]. Space Science Reviews,2016,204(1-4):49-82. doi:  10.1007/s11214-016-0244-5
    [51] 林隽,汪敏,田晖,等. 太阳爆发的抵近探测[J]. 中国科学,2019,49(49):059607.

    LIN J,WANG M,TIAN H,et al. In situmeasurements of the solar eruption[J]. Scientia Sinica Physica,Mechanica & Astronomica,2019,49(49):059607.
    [52] 梅丽,苏彦,周建锋. 极低频射电天文观测现状与未来发展[J]. 天文研究与技术,2018,15(2):127-139.

    MEI L,SU Y,ZHOU J F. The history and development of the low-frequency radio observation[J]. Astronomical Research & technology,2018,15(2):127-139.
    [53] 张韬,苏彦. 嫦娥四号低频射电频谱仪降低背景噪声方法的研究[J]. 天文研究与技术,2019,16(3):312-320.

    ZHANG T,SU Y. Research of the method for reducing background of very low frequency radio spectrumon Chang'E-4[J]. Astronomical Research & Technology,2019,16(3):312-320.
    [54] 薛长斌,周晴,王雷,等. “嫦娥4号”任务有效载荷系统设计与实现[J]. 深空探测学报,2017,4(6):515-521.

    XUE C B,ZHOU Q,WANG L,et al. Design and implementation of payload system in chang’e-4 mission[J]. Journal of Deep Space Exploration,2017,4(6):515-521.
    [55] 贾瑛卓,邹永廖,薛长斌,等. 嫦娥四号任务科学目标和有效载荷配置[J]. 空间科学学报,2018,38(1):118-130.

    JIA Y Z Z,ZOU Y L,XUE C B,et al. Scientific objectives and payloads of Chang’ E-4 mission[J]. Chinese Journal of Space Science,2018,38(1):118-130.
    [56] 吴伟仁,刘继忠,唐玉华,等. 中国探月工程[J]. 深空探测学报,2019,6(5):405-416.

    WU W R,LIU J Z,TANG Y H,et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416.
  • [1] 裴福俊, 严鸿, 朱明君.  太阳敏感器辅助的分布式EKF-SLAM火星车自主导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20171117001
    [2] 石海平, 陈燕, 贾阳, 屈严, 刘治钢, 王文强, 彭松.  太阳电池阵火星环境发电建模仿真 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20200042
    [3] 韩意, 陈明, 段成林, 李翠兰.  航天器太阳光压面积影响因素仿真分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190808010
    [4] 王文强, 杨洪东, 杨广, 王佳禹, 吴庆, 顾春杰.  太阳电池阵深空探测适应性设计概论 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20191101003
    [5] 谭宝林, 谭程明, 黄静, 陈林杰.  空间甚低频太阳射电Ⅲ型爆研究进展 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2020.20190227002
    [6] 陈林杰, 颜毅华, 谭宝林.  基于空间矢量天线的太阳低频射电爆发探测研究 . 深空探测学报(中英文),
    [7] 敖先志, 刘四清, 沈华, 王晶晶, 胡骏翔, 李刚.  2 AU以内的“渐进型”太阳高能粒子事件模拟 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.02.007
    [8] 宁晓琳, 晁雯.  一种基于太阳自转轴观测角的新型天文导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.04.003
    [9] 宁晓琳, 桂明臻, 孙晓函, 刘劲, 吴伟仁.  一种基于太阳震荡时间延迟量测的自主天文导航方法 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2019.01.013
    [10] 吴迪, 陈纾, 陈龙江, 叶志龙, 郑循江.  基于SiP技术的单片集成数字式太阳敏感器 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.01.012
    [11] 张吉栋, 孟治国, 朱蕴哲, 曾昭发, 平劲松.  基于LOLA数据的冯·卡门撞击坑太阳辐射研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2018.01.002
    [12] 纪奕才, 赵博, 方广有, 平劲松, 吴伟仁, 宁远明, 卢伟, 周斌.  在月球背面进行低频射电天文观测的关键技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2017.02.008
    [13] 邬静云, 高有涛.  利用绳系太阳帆减缓小行星自转的技术研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.007
    [14] 张建琴, 徐建明, 贾巍, 邱宝贵, 肖杰.  深空探测太阳电池阵应用及关键技术分析 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.01.001
    [15] 胡海岩.  太阳帆航天器的关键技术 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2016.04.005
    [16] 曾祥远, 龚胜平, 李俊峰, 蒋方华, 宝音贺西.  应用太阳帆悬停探测哑铃形小行星 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2015.01.007
    [17] 贾巍, 倪家伟, 黄三玻, 宗魏, 肖杰, 王训春, 池卫英.  火星尘埃对太阳电池阵的影响与电帘除尘研究 . 深空探测学报(中英文), doi: 10.15982/j.issn.2095-7777.2014.04.010
    [18] 贺晶, 龚胜平, 李俊峰.  利用逃逸能量的太阳帆最快交会轨迹优化 . 深空探测学报(中英文),
    [19] 郑永春, 欧阳自远.  太阳系探测的发展趋势与科学问题分析 . 深空探测学报(中英文),
    [20] 倪彦硕, 宝音贺西, 李俊峰.  考虑太阳摄动的小行星附近轨道动力学 . 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-22
  • 修回日期:  2020-05-22

空间甚低频太阳II型射电暴研究进展

doi: 10.15982/j.issn.2095-7777.2020.20190222001
    基金项目:  国家自然科学基金资助项目(11941003,11663007,11703089,U1831201,41764007);中国科学院“西部之光”人才培养计划
    作者简介:

    高冠男(1982– ),女,副研究员,主要研究方向:太阳射电,空间天气。通讯地址:云南省昆明市东郊凤凰山云南天文台(650216)电话:(0871)63920882 E-mail:ggn@ynao.ac.cn

    汪敏(1966– ),男,研究员,博士生导师,主要研究方向:太阳射电,射电天文技术。通讯地址:云南省昆明市东郊凤凰山云南天文台(650216)电话:(0871)63920866 E-mail:wm@ynao.ac.cn

    董亮(1982– ),男,高级工程师/客座教授,主要研究方向:射电天文技术,空间天气-导航系统影响。通讯地址:云南省昆明市东郊凤凰山云南天文台(650216)电话:(0871)63920860 E-mail:dongliang@ynao.ac.cn

    郭少杰(1987– ),男,助理研究员,主要研究方向:低频射电阵。通讯地址:云南省昆明市东郊凤凰山云南天文台(650216)电话:(0871)63920860 E-mail:guosj891025@ynao.ac.cn

  • ● The physical mechanism,history,research progress of metric and inter-planetary(IP)type II solar radio bursts are introduced. ● The relationship between IP type II radio bursts and space weather(geomagnetic storms,solar energetic particle events,etc.)is introduced. ● The space VLF observation equipment are introduced,especially the space radio spectrometers of Change-4.

摘要: 耀斑和日冕物质抛射(Solar flares and coronal Mass Ejections,CME)是产生灾害性空间天气的源扰动。II型射电暴是CME驱动的激波在日冕和行星际空间中运动引起电磁波辐射的结果。以研究太阳物理和空间天气预警预报为背景,对II型射电暴特别是甚低频II型射电暴的频谱特征以及物理成因进行分析,认为甚低频II型射电暴不但可以用于估计CME激波的运动速度、诊断日冕磁场等物理参数,还可以为空间天气预警预报方面提供参考。研究结果可以为空间甚低频射电观测设备的科学研究及应用方面提供有益的参考。

注释:
1)  ● The physical mechanism,history,research progress of metric and inter-planetary(IP)type II solar radio bursts are introduced. ● The relationship between IP type II radio bursts and space weather(geomagnetic storms,solar energetic particle events,etc.)is introduced. ● The space VLF observation equipment are introduced,especially the space radio spectrometers of Change-4.

English Abstract

高冠男, 汪敏, 董亮, 郭少杰. 空间甚低频太阳II型射电暴研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190222001
引用本文: 高冠男, 汪敏, 董亮, 郭少杰. 空间甚低频太阳II型射电暴研究进展[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2095-7777.2020.20190222001
GAO Guannan, WANG Min, DONG Liang, GUO Shaojie. Advances in Space VLF Type II Solar Radio Bursts[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190222001
Citation: GAO Guannan, WANG Min, DONG Liang, GUO Shaojie. Advances in Space VLF Type II Solar Radio Bursts[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2095-7777.2020.20190222001
参考文献 (56)

返回顶部

目录

    /

    返回文章
    返回