中文核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星空间磁场低频波动

金泰峰 李磊 张艺腾

金泰峰, 李磊, 张艺腾. 火星空间磁场低频波动[J]. 深空探测学报(中英文), 2019, 6(2): 134-141. doi: 10.15982/j.issn.2095-7777.2019.02.004
引用本文: 金泰峰, 李磊, 张艺腾. 火星空间磁场低频波动[J]. 深空探测学报(中英文), 2019, 6(2): 134-141. doi: 10.15982/j.issn.2095-7777.2019.02.004
JIN Taifeng, LI Lei, ZHANG Yiteng. Low-Frequency Magnetic Field Fluctuations in the Martian Space[J]. Journal of Deep Space Exploration, 2019, 6(2): 134-141. doi: 10.15982/j.issn.2095-7777.2019.02.004
Citation: JIN Taifeng, LI Lei, ZHANG Yiteng. Low-Frequency Magnetic Field Fluctuations in the Martian Space[J]. Journal of Deep Space Exploration, 2019, 6(2): 134-141. doi: 10.15982/j.issn.2095-7777.2019.02.004

火星空间磁场低频波动

doi: 10.15982/j.issn.2095-7777.2019.02.004

Low-Frequency Magnetic Field Fluctuations in the Martian Space

  • 摘要: 波动是无碰撞等离子体中能量重新分配的重要途径。对波动的研究有助于更准确地认识太阳风与火星的相互作用,认识火星空间环境的特征。介绍了火星空间中常见的几种磁场低频波动,包括离子回旋波(Ion-CyclotronWave,ICW)、磁流体动力学(MagnetoHydro Dynamic,MHD)波、镜像模波、哨声波以及磁场锯齿状波动,总结了这几类波动的特征和可能的形成机制,说明不同种类的波动所反映的不同的物理过程。由于波粒相互作用在火星离子逃逸的过程中起到了重要作用,波动可影响火星环境的演化。
  • [1] MAZELLE C,WINTERHALTER D,SAUER K,et al. Bow shock and upstream phenomena at Mars[J]. Space Science Reviews,2004, 111(1-2):115-181.
    [2] NAGY A F,WINTERHALTER D,SAUER K,et al. The plasma environment of Mars[J]. Space Science Reviews,2004,111(1-2):33-114.
    [3] ACUÑA M,CONNERNEY J E P,WASILEWSKI P,et al. Magnetic field of Mars:summary of results from the aerobraking and magnetic mapping orbits[J]. Journal of Geophysical Research,2001,106(E10):23403-23417.
    [4] 张艺腾,李磊. 火星空间磁场结构特征[J]. 空间科学学报,2009,29(3):257-261. ZHANG Y T,LI L. Feature of the martian magnetic field structure[J]. Chinese Journal of Space Science,2009,29(3):257-261.
    [5] WEI H Y,RUSSELL C T,ZHANG T L,et al. Comparative study of ion cyclotron waves at Mars, Venus and Earth[J]. Planetary and Space Science, 2011(59):1039-1047.
    [6] ESPLEY J R,CLOUTIER P A,CRIDER D H,et al. Lowfrequency plasma oscillations at Mars during the October 2003 solar storm[J]. Journal of Geophysical Research:Space Physics,2005(A9):1-10.
    [7] RUSSELL C T,LUHMANN J G,SCHWINGENSCHUH K,et al. Upstream waves at Mars-PHOBOS observations[J]. Geophysical Research Letters,1990(17):897-900.
    [8] BRAIN D A,BAGENAL F,ACUÑA M H,et al. Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock[J]. Journal of Geophysical Research (Space Physics), 2002,107(A6):1-17.
    [9] ROMANELLI N,BERTUCCI C,GOMEZ D,et al. Proton cyclotron waves upstream from Mars:observations from mars global surveyor[J]. Planetary and Space Science,2013(76):1-9.
    [10] WEI H Y,COWEE M M,RUSSELL C T,et al. Ion cyclotron waves at Mars:occurrence and wave properties[J]. Journal of Geophysical Research:Space Physics,2014,119(7):5244-5258.
    [11] BERTUCCI C,ROMANELLI N,CHAUFRAY J,et al. A temporal variability of waves at the proton cyclotron frequency upstream from Mars:implications for Mars distant hydrogen exosphere[J]. Geophysical Research Letters,2013,40(15):3809-3813.
    [12] ROMANELLI N,MAZELLE C,CHAUFRAY J Y,et al. Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN:associated variability of the Martian upper atmosphere[J]. Journal of Geophysical Research:Space Physics,2016,121(11):11113-11128.
    [13] SAUER K,BAUMGILRTEL K,AXNⅡS I,et al. Fluid simulation of the AMPTE Solar wind lithium release[J]. Advance in Space Research,1990,10(7):95-98.
    [14] RUHUNUSIRI S,HALEKAS J S,CONNERNEY J E P,et al. Lowfrequency waves in the martian magnetosphere and their response to upstream solar wind driving conditions[J]. Geophysical Research Letters,2015,42(21):8917-8924.
    [15] LUI A T Y,GOODRICH C C,MANKOFSKY A. Papadopoulos K early time interaction of lithium ions with the Solar wind in the AMPTE mission[J]. Journal of Geophysical Research,1986(91):1333-1338.
    [16] FOWLER C M,ANDERSSON L,ERGUN R E,et al. MAVEN observations of Solar wind-driven magnetosonic waves heating the martian dayside ionosphere[J]. Journal of Geophysical Research:Space Physics,2018(123):4129-4149.
    [17] COLLINSON G,WILSON L B Ⅲ,OMIDI N,et al. Solar wind induced waves in the skies of Mars:ionospheric compression, energization,and escape resulting from the impact of ultralow frequency magnetosonic waves generated upstream of the Martian bow shock[J]. Journal of Geophysical Research:Space Physics, 2018,123(9):7241-7256.
    [18] RUHUNUSIRI S,HALEKAS J S,ESPLEY J R,et al. One-Hertz waves at Mars:MAVEN observations[J]. Journal of Geophysical Research:Space Physics,2018(123):3460-3476.
    [19] HARADA Y,ANDERSSON L,FLOWER C M,et al. MAVEN observations of electron-induced whistler mode waves in the Martian magnetosphere[J]. Journal of Geophysical Research:Space Physics, 2016,121(10):9717-9731.
    [20] HALEKAS J S,BRAIN D A,EASTWOOD J P. Large amplitude compressive "sawtooth" magnetic field oscillations in the Martian magnetosphere[J]. Journal of Geophysical Research,2011(116):1-13.
    [21] DUBININ E,FRAENZ M. Ultra-low-frequency waves at Venus and Mars,low-frequency waves in space plasmas[M]. Washington,DC:American Geophysical Union,2016.
  • [1] 王明远, 王美, 平劲松, 韩松涛.  月球空间环境研究进展 . 深空探测学报(中英文), 2021, 8(4): 1-8. doi: 15982/j.issn.2096-9287.2021.20200013
    [2] 张宝明, 朱岩, 王连国, 杨建峰, 周斌, 徐卫明, 孙树全, 蔡治国, 徐欣锋, 杜庆国.  中国首次火星探测任务火星车有效载荷定标试验 . 深空探测学报(中英文), 2020, 7(5): 481-488. doi: 10.15982/j.issn.2096-9287.2020.20200043
    [3] 滕锐, 韩宏伟, 乔栋.  火星探测最优离轨制导方法研究 . 深空探测学报(中英文), 2020, 7(2): 184-190. doi: 10.15982/j.issn.2095-7777.2020.20190315001
    [4] 钟武烨, 赵守智, 郑剑平, 吕征, 解家春.  空间热离子能量转换技术发展综述 . 深空探测学报(中英文), 2020, 7(1): 47-60. doi: 10.15982/j.issn.2095-7777.2020.20200114001
    [5] 石海平, 陈燕, 贾阳, 屈严, 刘治钢, 王文强, 彭松.  太阳电池阵火星环境发电建模仿真 . 深空探测学报(中英文), 2020, 7(5): 474-480. doi: 10.15982/j.issn.2096-9287.2020.20200042
    [6] 徐侃彦, 马玲玲, 印红, 张秦, 邹乐洋.  载人火星探测的行星保护 . 深空探测学报(中英文), 2019, 6(1): 23-30. doi: 10.15982/j.issn.2095-7777.2019.01.004
    [7] 徐侃彦, 马玲玲, 印红, 张轶男.  火星无人探测与行星保护 . 深空探测学报(中英文), 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
    [8] 蔡明辉, 杨涛, 韩建伟.  载人深空探测磁场主动辐射防护技术研究 . 深空探测学报(中英文), 2019, 6(2): 165-172. doi: 10.15982/j.issn.2095-7777.2019.02.008
    [9] 王馨悦, 张爱兵, 荆涛, 孔令高, 张珅毅.  近月空间带电粒子环境——“嫦娥1号”“嫦娥2号”观测结果 . 深空探测学报(中英文), 2019, 6(2): 119-126. doi: 10.15982/j.issn.2095-7777.2019.02.002
    [10] 王赤, 张贤国, 徐欣锋, 孙越强.  中国月球及深空空间环境探测 . 深空探测学报(中英文), 2019, 6(2): 105-118. doi: 10.15982/j.issn.2095-7777.2019.02.001
    [11] 费涛, 方美华, 朱基聪, 田鹏宇.  木星磁场及磁场模型的对比分析 . 深空探测学报(中英文), 2019, 6(2): 150-155. doi: 10.15982/j.issn.2095-7777.2019.02.006
    [12] 孔令高, 张爱兵, 田峥, 郑香脂, 王文静, 刘勇, 丁建京.  自主火星探测高集成离子与中性粒子分析仪 . 深空探测学报(中英文), 2019, 6(2): 142-149. doi: 10.15982/j.issn.2095-7777.2019.02.005
    [13] 耿言, 周继时, 李莎, 付中梁, 孟林智, 刘建军, 王海鹏.  我国首次火星探测任务 . 深空探测学报(中英文), 2018, 5(5): 399-405. doi: 10.15982/j.issn.2095-7777.2018.05.001
    [14] 刘庆会.  火星探测VLBI测定轨技术 . 深空探测学报(中英文), 2018, 5(5): 435-441. doi: 10.15982/j.issn.2095-7777.2018.05.005
    [15] 彭松, 贾阳, 陈百超.  火星车绝对定位方法选择 . 深空探测学报(中英文), 2016, 3(2): 140-144. doi: 10.15982/j.issn.2095-7777.2016.02.007
    [16] 党兆龙, 陈百超.  火星土壤物理力学特性分析 . 深空探测学报(中英文), 2016, 3(2): 129-133,144. doi: 10.15982/j.issn.2095-7777.2016.02.005
    [17] 于登云, 孙泽洲, 孟林智, 石东.  火星探测发展历程与未来展望 . 深空探测学报(中英文), 2016, 3(2): 108-113. doi: 10.15982/j.issn.2095-7777.2016.02.002
    [18] 沈自才, 代巍, 白羽, 刘荣强, 丁义刚, 刘业楠.  载人深空探测任务的空间环境工程关键问题 . 深空探测学报(中英文), 2016, 3(2): 99-107. doi: 10.15982/j.issn.2095-7777.2016.02.001
    [19] 贺晶, 龚胜平, 李俊峰.  利用逃逸能量的太阳帆最快交会轨迹优化 . 深空探测学报(中英文), 2014, 1(1): 60-66.
    [20] 徐青, 耿迅, 蓝朝祯, 邢帅.  火星地形测绘研究综述 . 深空探测学报(中英文), 2014, 1(1): 28-35.
  • 加载中
计量
  • 文章访问数:  916
  • HTML全文浏览量:  86
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2019-01-15
  • 刊出日期:  2019-04-01

火星空间磁场低频波动

doi: 10.15982/j.issn.2095-7777.2019.02.004

摘要: 波动是无碰撞等离子体中能量重新分配的重要途径。对波动的研究有助于更准确地认识太阳风与火星的相互作用,认识火星空间环境的特征。介绍了火星空间中常见的几种磁场低频波动,包括离子回旋波(Ion-CyclotronWave,ICW)、磁流体动力学(MagnetoHydro Dynamic,MHD)波、镜像模波、哨声波以及磁场锯齿状波动,总结了这几类波动的特征和可能的形成机制,说明不同种类的波动所反映的不同的物理过程。由于波粒相互作用在火星离子逃逸的过程中起到了重要作用,波动可影响火星环境的演化。

English Abstract

金泰峰, 李磊, 张艺腾. 火星空间磁场低频波动[J]. 深空探测学报(中英文), 2019, 6(2): 134-141. doi: 10.15982/j.issn.2095-7777.2019.02.004
引用本文: 金泰峰, 李磊, 张艺腾. 火星空间磁场低频波动[J]. 深空探测学报(中英文), 2019, 6(2): 134-141. doi: 10.15982/j.issn.2095-7777.2019.02.004
JIN Taifeng, LI Lei, ZHANG Yiteng. Low-Frequency Magnetic Field Fluctuations in the Martian Space[J]. Journal of Deep Space Exploration, 2019, 6(2): 134-141. doi: 10.15982/j.issn.2095-7777.2019.02.004
Citation: JIN Taifeng, LI Lei, ZHANG Yiteng. Low-Frequency Magnetic Field Fluctuations in the Martian Space[J]. Journal of Deep Space Exploration, 2019, 6(2): 134-141. doi: 10.15982/j.issn.2095-7777.2019.02.004
参考文献 (21)

目录

    /

    返回文章
    返回