中文核心期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星无人探测与行星保护

徐侃彦 马玲玲 印红 张轶男

徐侃彦, 马玲玲, 印红, 张轶男. 火星无人探测与行星保护[J]. 深空探测学报(中英文), 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
引用本文: 徐侃彦, 马玲玲, 印红, 张轶男. 火星无人探测与行星保护[J]. 深空探测学报(中英文), 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
XU Kanyan, MA Lingling, YIN Hong, ZHANG Yinan. Mars Robotic Exploration and Planetary Protection[J]. Journal of Deep Space Exploration, 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
Citation: XU Kanyan, MA Lingling, YIN Hong, ZHANG Yinan. Mars Robotic Exploration and Planetary Protection[J]. Journal of Deep Space Exploration, 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002

火星无人探测与行星保护

doi: 10.15982/j.issn.2095-7777.2019.01.002
基金项目: 载人航天领域第四批预先研究资助项目(010101)

Mars Robotic Exploration and Planetary Protection

  • 摘要: 行星保护是每一个开展深空探测的国家都要面对的问题,火星是太阳系里最可能存在地外生命的星球之一,也是行星保护的重点关注对象,在我国火星探测即将正式启动之际,对标国际上行星保护的政策、标准、技术和管理措施,对我国未来在火星探测中满足国际上行星保护的要求至关重要。主要回顾了行星保护的历史,国外在火星探测历史上行星保护正向防护所采取的措施,以及现代科学技术发展对行星保护正向防护相关技术的影响,并对我国未来火星及深空探测活动中应该采取的行星保护正向污染防护技术提出了建议。
  • [1] The COSPAR Workshop. Planetary protection policy[R]. Houston,Texas:World Space Council,2011.
    [2] KMINEK G,CONLEY C,HIPKIN V,et al. COSPAR's planetary protection policy[J]. Space Res Today,2017,200:12-25
    [3] CYPSER DA. International law and policy of extraterrestrial planetary protection[J]. Jurimetrics,1993,33(2):315-339
    [4] United Nations.RES 2222(XXI)-1967. The treaty on principles governing the activities of states in the exploration and use of outer space,including the Moon and other celestial bodies[S].USA:United Nations,1966.
    [5] RUMMEL J D. Planetary protection policy(U.S.A.)[J]. Adv Space Res,1992,12(4):129-31
    [6] DEBUS A. The'] MING D W,ARCHERPD J R,GLAVIN D P,et al. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay,Gale Crater,Mars[J]. Science,2014,《Advances in space research:the official journal of the Committee on Space Research(COSPAR)》,1992,12(4):31-129.
    [7] BARTHOLOMEW C S,PROTER D C. Reliability and sterilization[J]. J. Spacecraft,1966,3(12):1762
    [8] The Viking Project Office. Viking project microbiological assay and monitoring plan,M75-148-0[R]. Washington,DC:NASA,1974.
    [9] NASA. Post-launch report of compliance by Viking with COSPAR planetary quarantine recommendations[R]. Washington,DC:NASA,1975.
    [10] CORLISS W R. The Viking mission to Mars,NASA SP-334[R]. Washington,DC:NASA SP-334,1974.
    [11] HOLMBERG N A,FAUST R P,HOLT H M. Viking '75 spacecraft design and test summary,volume I-lander design[R]. Washington,DC:NASA,1980.
    [12] National Research Council. Biological contamination of Mars:issues and recommendations[M]. Washington,DC:National Academies Press,1992.
    [13] BARENGOLTZ J,WITTE J. Planetary protection implementation on Mars reconnaissance orbiter mission[J]. Adv Sp Res,2008,42(6):1108-1119
    [14] LUPISELLA M L,MUELLER T. Advanced technologies for robotic exploration leading to human exploration:results from the SpaceOps 2015 workshop[C]//International Conference on Space Operations. Daejeon,Korea:[s.n.],2016.
    [15] BONITZ R G,SHIRAISHI L R,MATTHEW A,et al. NASA Mars 2007 Phoenix lander robotic arm and icy soil acquisition device[J]. J. Geophys Res,2008,113:E00A01
    [16] BENARDINI Ⅲ J N,LADUC M T,BALLOU D,et al. Implementing planetary protection on the atlas V fairing and ground systems used to launch the mars science laboratory[J]. Astrobiology,2014,14(1):33-41
    [17] NASA.NPD8020.7 REV G W/CHG 1-1999,Biological contamination control for outbound and inbound planetary spacecraft[S].USA:NASA,1999.
    [18] NASA.NPR8020.12D-2011,Planetary protection provisions for robotic extraterrestrial missions[S]. USA:NASA,2011.
    [19] NASA. NPG 5340.1D-1999,NASA standard procedures for the microbiological examination of space hardware[S]. USA:NASA,1999.
    [20] NASA. NASA-HDBK-6022.08-17-2010,Handbook for the microbial examination of space hardware[S]. USA:NASA,2010.
    [21] HARRISON J P,GHEERAERT N,TSIGELNITSKIY D,et al. The limits for life under multiple extremes[J]. Trends Microbiol,2013,21(4):204-212
    [22] STEVENSON A,CRAY J A,WILLIAMS J P,et al. Is there a common water-activity limit for the three domains of life?[J]. ISME J,2015,9(6):1333
    [23] MOISSL-EICHINGER C,COCKELL C,RETTBERG P. Venturing into new realms? microorganisms in space[J]. FEMS Microbiol Rev,2016,40(5):722-37
    [24] DERECHO I,MCCOY K B,VAISHAMPAYAN P,et al. Characterization of hydrogen peroxide resistant Acinetobacter species isolated during the Mars phoenix spacecraft assembly[J]. Astrobiology,2014,14(10):837-847
    [25] SMITH S A,BENARDINI J N,ANDERL D,et al. Identification and characterization of early mission phase microorganisms residing on the Mars Science Laboratory and assessment of their potential to survive Mars-like conditions[J]. Astrobiology,2017,17(3):253-265
    [26] VENKATESWARAN K,VAISHAMPAYAN P,BENARDINI J N,et al. Deposition of extremotolerant bacterial strains isolated during different phases of Phoenix Spacecraft assembly in a public culture collection[J]. Astrobiology,2014,14:24-26
    [27] CHECINSKA A,PROBST AJ,VAISHAMPAYAN P,et al. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities[J]. Microbiome,2015,3(1):50-59
    [28] ESA. ECSS-Q-ST-70-57C-2013,Dry heat bioburden reduction for flight hardware[S].[S.l.]:ESA,2013.
    [29] COBB T C. UV-C decontamination:NASA,prions,and future perspectives[J]. Appl Biosaf,2016,21(2):84-88
    [30] STAPELMANN K,FIEBRANDT M,RAGUSE M,et al. Utilization of low-pressure plasma to inactivate bacterial spores on stainless steel screws[J]. Astrobiology,2013,13(7):597-606
    [31] POTTAGE T,MACKEN S,GIRI K,et al. Low-temperature decontamination with hydrogen peroxide or chlorine dioxide for space applications[J]. Appl Environ Microbiol,2012,78(12):4169-4174
    [32] ZEITLIN C,HASSLER D M,CUCINOTTA F A,et al. Measurements of energetic particle radiation in transit to Mars on the Mars science laboratory[J]. Science,2013,340(6136):1080-1084
    [33] BEAUDET,ROBERT A. The statistical treatment implemented to obtain the planetary protection bioburdens for the Mars Science Laboratory mission[J]. Adv Space Res,2013,51(12):2261-2268
    [34] BAUERMEISTER A,MAHNERT A,AUERBACH A,et al. Quantification of encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods[J]. PLoS One,2014,9(4):e94265
    [35] MORRIS H C,MONACO L A,STEELE A,et al. Setting a standard:the limulus amebocyte lysate assay and the assessment of microbial contamination on spacecraft surfaces[J]. Astrobiology,2010,10(8):845-852
    [36] HENRICKSON,R,LUNDGREN,P,MOHAN,G B M,et al. Comprehensive measurement of microbial burden in nutrient-deprived cleanrooms[C]//47th International Conference on Environmental Systems. Charleston,South Carolina:[s.n.],2017.
    [37] LA DUC M T,VAISHAMPAYAN P,NILSSON H R,et al. Pyrosequencing-derived bacterial,archaeal,and fungal diversity of spacecraft hardware destined for Mars[J]. Appl Environ Microbiol,2012,78(16):5912-5922
    [38] HUGERTH L W,ANDERSSON A F. Analysing microbial community composition through amplicon sequencing:from sampling to hypothesis testing[J]. Front Microbiol,2017,8:1561
    [39] BLAKKOLB B,LOGAN C,JANDURA L,et al. Organic cleanliness of the Mars Science Laboratory sample transfer chain[J]. Rev Sci Instrum,2014,85(7):251-261
    [40] SUMMONS R E,SESSIONS A L,ALLWOOD A C,et al. Planning considerations related to the organic contamination of Martian samples and implications for the Mars 2020 Rover[J]. Astrobiology,2014,14(12):969-1027
    [41] National Academies Press. Committee on preventing the forward contamination of Mars,National Research Council. preventing the forward contamination of Mars[M]. Washington,DC:National Academies Press,2006.
    [42] MOISSL-EICHINGER C,AUERBACH A K,PROBST A J,et al. Quo vadis? microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments[J]. Sci Rep,2015(5):9156
    [43] ALEXANDER M,PARAG V,PROBST A J,et al. Cleanroom maintenance significantly reduces abundance but not diversity of indoor microbiomes[J]. PLoS One,2015,10(8):e0134848
    [44] DEVINCENZI D L. Planetary protection issues and the future exploration of Mars[J]. Adv Space Res,1992,12(4):121-8
  • [1] 王靓玥, 郭延宁, 马广富.  火星探测器制动捕获策略研究 . 深空探测学报(中英文), 2020, 7(2): 178-183. doi: 10.15982/j.issn.2095-7777.2020.20171123001
    [2] 张宝明, 朱岩, 王连国, 杨建峰, 周斌, 徐卫明, 孙树全, 蔡治国, 徐欣锋, 杜庆国.  中国首次火星探测任务火星车有效载荷定标试验 . 深空探测学报(中英文), 2020, 7(5): 481-488. doi: 10.15982/j.issn.2096-9287.2020.20200043
    [3] 滕锐, 韩宏伟, 乔栋.  火星探测最优离轨制导方法研究 . 深空探测学报(中英文), 2020, 7(2): 184-190. doi: 10.15982/j.issn.2095-7777.2020.20190315001
    [4] 薛彬, 刘生润, 杨建峰.  用于火星表面生命信息探测的激光拉曼技术进展 . 深空探测学报(中英文), 2019, 6(5): 503-512. doi: 10.15982/j.issn.2095-7777.2019.05.012
    [5] 张轶男, 彭兢, 邹乐洋, 徐侃彦.  国际行星保护发展综述 . 深空探测学报(中英文), 2019, 6(1): 3-8. doi: 10.15982/j.issn.2095-7777.2019.01.001
    [6] 徐冲, 辛冰牧, 吴斌, 谢琼.  国际行星保护政策解读与技术前瞻 . 深空探测学报(中英文), 2019, 6(1): 16-22. doi: 10.15982/j.issn.2095-7777.2019.01.003
    [7] 徐侃彦, 马玲玲, 印红, 张秦, 邹乐洋.  载人火星探测的行星保护 . 深空探测学报(中英文), 2019, 6(1): 23-30. doi: 10.15982/j.issn.2095-7777.2019.01.004
    [8] 申智春, 林小艳, 程坤, 王海鹏.  火星探测器器箭分离冲击响应影响分析与评价 . 深空探测学报(中英文), 2018, 5(5): 483-487. doi: 10.15982/j.issn.2095-7777.2018.05.012
    [9] 李春来, 刘建军, 耿言, 曹晋滨, 张铁龙, 方广有, 杨建峰, 舒嵘, 邹永廖, 林杨挺, 欧阳自远.  中国首次火星探测任务科学目标与有效载荷配置 . 深空探测学报(中英文), 2018, 5(5): 406-413. doi: 10.15982/j.issn.2095-7777.2018.05.002
    [10] 杨甲森, 刘明洁, 陈托, 智佳, 张华伟, 王炜, 陈志敏.  中国首次火星探测任务有效载荷地面综合测试系统设计 . 深空探测学报(中英文), 2018, 5(5): 442-449. doi: 10.15982/j.issn.2095-7777.2018.05.006
    [11] 刘建军, 苏彦, 左维, 任鑫, 孔德庆, 温卫斌, 张洪波, 李春来.  中国首次火星探测任务地面应用系统 . 深空探测学报(中英文), 2018, 5(5): 414-425. doi: 10.15982/j.issn.2095-7777.2018.05.003
    [12] 刘庆会.  火星探测VLBI测定轨技术 . 深空探测学报(中英文), 2018, 5(5): 435-441. doi: 10.15982/j.issn.2095-7777.2018.05.005
    [13] 耿言, 周继时, 李莎, 付中梁, 孟林智, 刘建军, 王海鹏.  我国首次火星探测任务 . 深空探测学报(中英文), 2018, 5(5): 399-405. doi: 10.15982/j.issn.2095-7777.2018.05.001
    [14] 叶斌龙, 赵健楠, 黄俊.  美国2020火星车着陆区遴选进展及对2020中国火星任务着陆探测部分的一些思考 . 深空探测学报(中英文), 2017, 4(4): 310-324. doi: 10.15982/j.issn.2095-7777.2017.04.002
    [15] 朱岩, 白云飞, 王连国, 沈卫华, 张宝明, 王蔚, 周盛雨, 杜庆国, 陈春红.  中国首次火星探测工程有效载荷总体设计 . 深空探测学报(中英文), 2017, 4(6): 510-514,534. doi: 10.15982/j.issn.2095-7777.2017.06.002
    [16] 陈晓, 尤伟, 黄庆龙.  火星探测巡航段天文自主导航方法研究 . 深空探测学报(中英文), 2016, 3(3): 214-218. doi: 10.15982/j.issn.2095-7777.2016.03.003
    [17] 于登云, 孙泽洲, 孟林智, 石东.  火星探测发展历程与未来展望 . 深空探测学报(中英文), 2016, 3(2): 108-113. doi: 10.15982/j.issn.2095-7777.2016.02.002
    [18] 傅惠民, 娄泰山, 肖强.  火星进入段探测器自校准状态估计 . 深空探测学报(中英文), 2015, 2(3): 224-228. doi: 10.15982/j.issn.2095-7777.2015.03.006
    [19] 高朝辉, 童科伟, 时剑波, 申麟.  载人火星和小行星探测任务初步分析 . 深空探测学报(中英文), 2015, 2(1): 10-19. doi: 10.15982/j.issn.2095-7777.2015.01.002
    [20] 陈颖, 周璐, 王立.  一种火星多模式组合探测任务设想 . 深空探测学报(中英文), 2014, 1(2): 156-160.
  • 加载中
计量
  • 文章访问数:  1311
  • HTML全文浏览量:  36
  • PDF下载量:  791
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-13
  • 修回日期:  2019-01-10
  • 刊出日期:  2019-02-01

火星无人探测与行星保护

doi: 10.15982/j.issn.2095-7777.2019.01.002
    基金项目:  载人航天领域第四批预先研究资助项目(010101)

摘要: 行星保护是每一个开展深空探测的国家都要面对的问题,火星是太阳系里最可能存在地外生命的星球之一,也是行星保护的重点关注对象,在我国火星探测即将正式启动之际,对标国际上行星保护的政策、标准、技术和管理措施,对我国未来在火星探测中满足国际上行星保护的要求至关重要。主要回顾了行星保护的历史,国外在火星探测历史上行星保护正向防护所采取的措施,以及现代科学技术发展对行星保护正向防护相关技术的影响,并对我国未来火星及深空探测活动中应该采取的行星保护正向污染防护技术提出了建议。

English Abstract

徐侃彦, 马玲玲, 印红, 张轶男. 火星无人探测与行星保护[J]. 深空探测学报(中英文), 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
引用本文: 徐侃彦, 马玲玲, 印红, 张轶男. 火星无人探测与行星保护[J]. 深空探测学报(中英文), 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
XU Kanyan, MA Lingling, YIN Hong, ZHANG Yinan. Mars Robotic Exploration and Planetary Protection[J]. Journal of Deep Space Exploration, 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
Citation: XU Kanyan, MA Lingling, YIN Hong, ZHANG Yinan. Mars Robotic Exploration and Planetary Protection[J]. Journal of Deep Space Exploration, 2019, 6(1): 9-15. doi: 10.15982/j.issn.2095-7777.2019.01.002
参考文献 (44)

目录

    /

    返回文章
    返回