中文核心期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间核反应堆电源技术概览

胡古 赵守智

胡古, 赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报(中英文), 2017, 4(5): 430-443. doi: 10.15982/j.issn.2095-7777.2017.05.004
引用本文: 胡古, 赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报(中英文), 2017, 4(5): 430-443. doi: 10.15982/j.issn.2095-7777.2017.05.004
HU Gu, ZHAO Shouzhi. Overview of Space Nuclear Reactor Power Technology[J]. Journal of Deep Space Exploration, 2017, 4(5): 430-443. doi: 10.15982/j.issn.2095-7777.2017.05.004
Citation: HU Gu, ZHAO Shouzhi. Overview of Space Nuclear Reactor Power Technology[J]. Journal of Deep Space Exploration, 2017, 4(5): 430-443. doi: 10.15982/j.issn.2095-7777.2017.05.004

空间核反应堆电源技术概览

doi: 10.15982/j.issn.2095-7777.2017.05.004

Overview of Space Nuclear Reactor Power Technology

  • 摘要:

    空间核反应堆电源具有环境适应性好、功率覆盖范围广、结构紧凑以及大功率条件下质量功率比小等突出优点,在军民航天任务中具有广阔的应用前景,是改变未来航天动力格局的颠覆性技术之一。对空间核反应堆电源的原理、特点、适用范围、应用前景、历史发展情况及现状、典型方案、应用安全等进行了系统介绍,对技术发展趋势进行了分析总结,并就我国该技术发展给出一些见解。

  • [1] 苏著亭,杨继材,柯国土. 空间核动力 [M]. 上海:上海交通大学出版社,2015.
    [2] 解家春,赵守智. 空间核反应堆的过去、现在和未来(内部报告)[R]. 北京:中国原子能科学研究院,2014.
    [3] 许春阳,王颖,王春芬,等. 国际空间核反应堆电源发展历程(内部报告)[R]. 北京:中国核科技信息与经济研究院,2012.
    [4] IAEA. The role of nuclear power and nuclear propulsion in the peaceful exploration of space [R]. Vienna:IAEA,2005.
    [5] 杨启法,卢浩琳. 空间核反应堆电源研究和应用 [J]. 航天器工程,1995,4(4):11-20.
    [6] Voss S S. SNAP reactor overview [R]. USA:Air Force Weapons Laboratory,1984.
    [7] Pluta P R,Smith A M,Matteo N D. SP-100,a Flexible technology for space power from 10s to 100s of kWe [R]. USA:IEEE,1989.
    [8] Buden D. Summary of space nuclear reactor systems(1983-1992)[R]. USA:AIP,1993.
    [9] 朱毅麟.美国太空核动力计划重开张––“普罗米修斯”计划一瞥 [J]. 国际太空,2004,9:26-30.
    [10] Ashcroft J,Eshelman C. Summary of NR program prometheus efforts(C)//USA:Proceedings of the Space Technology and Applications International Forum. USA:STAIF,2007.
    [11] Mason L,Poston D,Qualls L. System concepts for affordable fission surface power,NASA-TM-2008-215166[R]. USA:NASA,2008.
    [12] Mason L,Gibson M,Poston D. Kilowatt-class fission power systems for science and human precursor missions [C]//USA:NETS-2013-6814,2013.
    [13] Gibson A M,Mason L. Development of NASA’s small fission power system for science and human exploration [R].USA:AIAA,2014.
    [14] 波诺马廖夫-斯捷普诺依 N M. 空间核动力(热电转换和热离子转换的空间核反应堆电源“ROMASHKA”和“ENISEY”)[M]. 刘舒,译. 北京:原子能出版社,2015.
    [15] 许春阳. 俄罗斯兆瓦级空间核动力装置研发进展(内部报告)[R]. 北京:中国核科技信息与经济研究院,2012.
    [16] 马世俊,杜辉,周继时,等. 核动力航天器发展历程(上)[J]. 中国航天,2014,(4):31-35.
    [17] 马世俊,杜辉,周继时,等. 核动力航天器发展历程(下)[J]. 中国航天,2014,(5):32-35.
    [18] 网易新闻. 中国深空探测将应用空间核动力 [OL]. http://news.163.com/17/0310/06/CF58R21D000187VI.html.
    [19] Moeckel E W. Propulsion systems for manned exploration of the solar system,NASA-TM-X-1864 [R]. USA:NASA,1969.
    [20] Bloomfield S H. Small space reactor power systems for unmanned solar system exploration missions, NASA-TM-100228 [R]. USA:,NASA ,1987.
    [21] Noca M,Polk E J,Lenard R. Nuclear electric propulsion for the exploration of the outer planets [C]// Proceedings of Forum on Innovative Approaches to Outer Planetary Exploration. USA:[s.n.],2001.
    [22] Oleson R S.Electric propulsion technology development for the jupiter icy Moons orbiter project [C]//Space 2004 Conference and Exhibit. USA:[s.n.], 2004.
    [23] Cassady R J,Frisbee H R,Gilland H J,et al. Recent advances in nuclear powered electric propulsion for space exploration [J]. Energy Conversion Management,2008,49:412-435
    [24] Chiravalle P V. Nuclear electric ion propulsion for three deep space missions [J]. Acta Astronautica,2008,62:374-390
    [25] NASA. Report of the 90-day study on human exploration of the Moon and Mars,NASA-TM-102999 [R]. USA,NASA,1989.
    [26] Henry W. Brandhorst,Ronald J. Sovie. Nuclear Technology and the Space Exploration Missions [C]// Proceedings of the 25th Intersociety Energy Conversion Engineerings Conference(IECEC-90). USA:[s.n.],1990.
    [27] Sovie R J,Bozek J M. Nuclear power systems for lunar and mars exploration [C]// 41st International Astronautical Conference. Germany:[s.n.],1990.
    [28] Coomes E P,Dagle J E. The PEGASUS:a nuclear electric propulsion system for the space exploration initiative [C]// Eigth Symposium on Space Nuclear Power Systems. USA:[s.n.],1991.
    [29] McGinnis J. Nuclear power sytems for manned mission to Mars [R]. USA:Naval Postgraduate School,2004.
    [30] Guven U,Velidi G. Usage of nuclear power as a powerful saudi arabia:source for space stations and for space development mission [C]//62nd International Astronautical Congress. South Africa:IACC,2011.
    [31] Andreev P V,Gulevich A V,et al. Physical and engineering potential of thermionics for advanced projects of sub-megawatt SNPS [C]// Nuclear and Emerging Technologies for space (NETS-2012). USA:ANS,2012.
    [32] Mankins J,Olivieri J,Hepenstal A. Preliminary survey of 21st century civil mission applications of space nuclear power,JPL Report JPL-D-3547,[R]. USA:Jet Propulsion Laboratory,1987.
    [33] Rosen R,Schnyer A D. Civilian uses of nuclear reactors in space [J]. Science & Global Security,1989(1):147-164
    [34] NASA. NASA space technology roadmaps and priorities [R]. USA:the National Academies Press,2012
    [35] NASA. NASA Technology roadmaps [R]. USA:NASA,2015.
    [36] Steven aftergood. background on space nuclear power [J]. Science & Global Security,1989(1):93-107
    [37] Aftergood S. Towards a ban on nuclear power in Earth orbit [J]. Space Policy,1989:25-40
    [38] (U.S.)Office of technology assessment. sdi(strategic defense initiative)technology,survivability and software [R]. USA:Reprinted by U.S. Department of Commerce National Technical Information Service,1988.
    [39] American Physics Society Study Group. Report to the American physical society of the study group on science and technology of directed energy weapons [J]. Reviews of Modern Physics,1987,59(3),Part II:S169
    [40] Canavan G H,Bloembergen N,Patel C K N. Debate on APS directed-energy weapons study [J]. Physics Today,1987(11):48-53
    [41] Coomes E P,Bamberger J A,Dagle J E. et al. An integrated mission planning approach for the Space Exploration Initiative,PHL-SA-20524[R]. USA:Pacific Northwest Laboratory,1992.
    [42] Sanchez R G,Hutchinson J D ,Patrick ray mcclure,et al. Kilowatt Reactor Using Stirling Technology(KRUSTY)demonstration:CEDT phase 1 preliminary design documentation ,LA-UR-15-26603 [R]. USA:[s.n.],2015
    [43] European commission. HORIZON 2020 [OL](2015-04-17). http://ec.europa.eu/programmes/horizon2020/en.
    [44] DiPoP – Disruptive technologies for space power and propulsion [OL](2017-09-20). http://dipop.eu/.
    [45] Koppel C R.,Valentian D,Blott R,et al. Disruptive propulsive technologies for Ueropean space missions [C]//5TH European Conference for Aeronautics and Space Sciences(EUCASS).Muenchen Germany:[s.n.],2013.
    [46] Ruault J M,Masson F,Worms J C,et al. MEGAHIT:update on the advanced propulsion roadmap for HORIZON2020 [C]//International Space Propulsion Conference. Cologne,Germany:Association Aeronautique et Astronautique de France,2014.
    [47] Jansen F,Bauer W,Masson F,et al. DEMOCRITOS demonstrators for realization of nuclear electric propulsion of the european roadmaps MEGAHIT & DiPoP [C]//Oint Conference of 30th International Symposium on Space Technology and Science,34th International Electric Propulsion Conference and 6th Nano-satellite Symposium. Kobe-Hyogo,Japan:[s.n.], 2015.
    [48] Koroteev A S,Andrianov D I,Karevskiy A V,et al. Test bench for key components of megawatt class international power and propulsion system ground demonstration [C]//7TH European Conference for Aeronautics and Space Sciences(EUCASS). Milan,Italy:[s.n.],2017.
    [49] Zakirov V,Pavshool V. Feasibility of the recent Russian nuclear electric propulsion concept:2010 [J]. USA:Nuclear Engineering and Design,2011,241(5):1529-1537
    [50] Marriott A T,Fujita T. Evolution of SP-100 system designs [C]// 11th Symp. Space Nuclear Power and Propulsion. USA:[s.n.],1994.
    [51] Mason L S,Poston D I. A summary of NASA architecture studies utilizing fission surface power technology [C]//8th Annual International Energy Conversion Engineering Conference. USA:NASA,2010.
    [52] Briggs M H,Gibson M A,Geng S. Fission surface power technology demonstration unit test results [C]// 14th International Energy Conversion Engineering Conference.USA:[s.n.],2016.
    [53] Gibson M A,Oleson S R,Poston D I,et al. NASA’s kilopower reactor development and the path to higher power missions [C]//IEEE Aerospace Conference. USA:IEEE,2017.
    [54] Albert C M,Haskin F E,Veniamin A U. Space Nuclear Safety [M]. Malabar(USA):KRIEGER Publishing Company,2008.
    [55] Aftergood S,Hafemeister D W,Prilutsky F O,et al. Nuclear power in space [J]. USA:Scientic American,1991,42-47
    [56] United Nations. Principles relevant to the use of nuclear power sources in outer space [C//United Nations 85th Plenary Meeting. Vienna,Austria:[s.n.],1992.
    [57] United Nations committee on the peaceful use of space scientific and technical subcommittee and international Atomic Energy Agency. Safety framework for nuclear power sources applications in outer space [R]. Vienna:United Nations,2009.
    [58] Thome F V,Wyant F J,Mulder D,et al. A TOPAZ international program overview [C]//AIP Conference Proceddings. USA:[s.n.],1995.
  • [1] 张怡晨, 胡宇鹏, 王泽, 朱长春, 胡绍全, 李思忠.  基于AMTEC的空间核反应堆电源热力学性能分析 . 深空探测学报(中英文), 2021, 8(2): 1-8. doi: 10.15982/j.issn.2096-9287.2020.20200045
    [2] 雷英俊, 朱立颖, 张文佳.  我国深空探测任务电源系统发展需求 . 深空探测学报(中英文), 2020, 7(1): 35-40. doi: 10.15982/j.issn.2095-7777.2020.20190712001
    [3] 吴树范, 王楠, 龚德仁.  引力波探测科学任务关键技术 . 深空探测学报(中英文), 2020, 7(2): 118-127. doi: 10.15982/j.issn.2095-7777.2020.20190402001
    [4] 胡文军, 刘继忠, 唐玉华, 陈军红, 张玮, 张哲, 李上明, 胡绍全.  空间同位素热/电源安全性技术指标体系框架研究 . 深空探测学报(中英文), 2020, 7(1): 73-80. doi: 10.15982/j.issn.2095-7777.2020.20190911001
    [5] 钟武烨, 赵守智, 郑剑平, 吕征, 解家春.  空间热离子能量转换技术发展综述 . 深空探测学报(中英文), 2020, 7(1): 47-60. doi: 10.15982/j.issn.2095-7777.2020.20200114001
    [6] 牛厂磊, 罗志福, 雷英俊, 王文强, 郑见杰, 乔学荣, 罗洪义, 胡文军, 钟武烨.  深空探测先进电源技术综述 . 深空探测学报(中英文), 2020, 7(1): 24-34. doi: 10.15982/j.issn.2095-7777.2020.20200002
    [7] 王科, 郑适, 解虎, 邓健, 朱培民, 法文哲, 谭小敏.  雷达技术在小天体任务中的应用研究 . 深空探测学报(中英文), 2019, 6(5): 496-502. doi: 10.15982/j.issn.2095-7777.2019.05.011
    [8] 陈莉丹, 谢剑锋, 刘勇, 陈明.  中国深空探测任务轨道控制技术综述 . 深空探测学报(中英文), 2019, 6(3): 210-218. doi: 10.15982/j.issn.2095-7777.2019.03.002
    [9] 段建锋, 张宇, 曹建峰, 陈略, 陈明, 谢剑锋.  中国月球探测任务轨道确定技术及发展综述 . 深空探测学报(中英文), 2019, 6(3): 203-209. doi: 10.15982/j.issn.2095-7777.2019.03.001
    [10] 杨涛, 邵志杰, 蔡明辉, 贾鑫禹, 韩建伟.  空间高能粒子与器件布线层核反应后次级粒子LET分布研究 . 深空探测学报(中英文), 2019, 6(2): 173-178. doi: 10.15982/j.issn.2095-7777.2019.02.009
    [11] 胡文军, 陈红永, 陈军红, 李上明, 胡绍全, 唐玉华.  空间核动力源的安全性研究进展 . 深空探测学报(中英文), 2017, 4(5): 453-465. doi: 10.15982/j.issn.2095-7777.2017.05.006
    [12] 饶炜, 孙泽洲, 孟林智, 王闯, 吉龙.  火星着陆探测任务关键环节技术途径分析 . 深空探测学报(中英文), 2016, 3(2): 121-128. doi: 10.15982/j.issn.2095-7777.2016.02.004
    [13] 沈自才, 代巍, 白羽, 刘荣强, 丁义刚, 刘业楠.  载人深空探测任务的空间环境工程关键问题 . 深空探测学报(中英文), 2016, 3(2): 99-107. doi: 10.15982/j.issn.2095-7777.2016.02.001
    [14] 胡海岩.  太阳帆航天器的关键技术 . 深空探测学报(中英文), 2016, 3(4): 334-344. doi: 10.15982/j.issn.2095-7777.2016.04.005
    [15] 周继时, 朱安文, 耿言.  空间核能源应用的安全性设计、分析和评价 . 深空探测学报(中英文), 2015, 2(4): 302-312. doi: 10.15982/j.issn.2095-7777.2015.04.002
    [16] 张文浩, 闻新, 院老虎, 刘家夫, 李威.  航天器与空间碎片的混合编队重构控制与应用 . 深空探测学报(中英文), 2015, 2(3): 283-288. doi: 10.15982/j.issn.2095-7777.2015.03.016
    [17] 李朝玉, 徐瑞.  一种基于时标状态的启发式航天器任务规划算法 . 深空探测学报(中英文), 2015, 2(1): 20-26. doi: 10.15982/j.issn.2095-7777.2015.01.003
    [18] 陈德相, 徐文明, 杜智远, 徐瑞.  航天器任务规划中资源约束的可分配处理方法 . 深空探测学报(中英文), 2015, 2(2): 180-185. doi: 10.15982/j.issn.2095-7777.2015.02.013
    [19] 唐歌实, 韩松涛, 陈略, 曹建峰, 任天鹏, 王美.  深空网干涉测量技术在“嫦娥3号”任务中应用分析 . 深空探测学报(中英文), 2014, 1(2): 146-149.
    [20] 孙靖, 王美, 平劲松.  利用VLBI技术进行深空航天器跟踪的仿真分析 . 深空探测学报(中英文), 2014, 1(3): 226-229. doi: 10.15982/j.issn.2095-7777.2014.03.011
  • 加载中
计量
  • 文章访问数:  2424
  • HTML全文浏览量:  64
  • PDF下载量:  1640
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-13
  • 修回日期:  2017-10-02
  • 刊出日期:  2017-10-01

空间核反应堆电源技术概览

doi: 10.15982/j.issn.2095-7777.2017.05.004

摘要: 

空间核反应堆电源具有环境适应性好、功率覆盖范围广、结构紧凑以及大功率条件下质量功率比小等突出优点,在军民航天任务中具有广阔的应用前景,是改变未来航天动力格局的颠覆性技术之一。对空间核反应堆电源的原理、特点、适用范围、应用前景、历史发展情况及现状、典型方案、应用安全等进行了系统介绍,对技术发展趋势进行了分析总结,并就我国该技术发展给出一些见解。

English Abstract

胡古, 赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报(中英文), 2017, 4(5): 430-443. doi: 10.15982/j.issn.2095-7777.2017.05.004
引用本文: 胡古, 赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报(中英文), 2017, 4(5): 430-443. doi: 10.15982/j.issn.2095-7777.2017.05.004
HU Gu, ZHAO Shouzhi. Overview of Space Nuclear Reactor Power Technology[J]. Journal of Deep Space Exploration, 2017, 4(5): 430-443. doi: 10.15982/j.issn.2095-7777.2017.05.004
Citation: HU Gu, ZHAO Shouzhi. Overview of Space Nuclear Reactor Power Technology[J]. Journal of Deep Space Exploration, 2017, 4(5): 430-443. doi: 10.15982/j.issn.2095-7777.2017.05.004
参考文献 (58)

目录

    /

    返回文章
    返回