中文核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷原子干涉重力仪在深空环境下的微重力探测

陆璇辉 曾大吉 章显 黄凯凯

陆璇辉, 曾大吉, 章显, 黄凯凯. 冷原子干涉重力仪在深空环境下的微重力探测[J]. 深空探测学报(中英文), 2017, 4(1): 20-25. doi: 10.15982/j.issn.2095-7777.2017.01.003
引用本文: 陆璇辉, 曾大吉, 章显, 黄凯凯. 冷原子干涉重力仪在深空环境下的微重力探测[J]. 深空探测学报(中英文), 2017, 4(1): 20-25. doi: 10.15982/j.issn.2095-7777.2017.01.003
LU Xuanhui, ZENG Daji, ZHANG Xian, HUANG Kaikai. Exploration of Microgravity by Using the Cold Atom Interferometer in Deep Space Environment[J]. Journal of Deep Space Exploration, 2017, 4(1): 20-25. doi: 10.15982/j.issn.2095-7777.2017.01.003
Citation: LU Xuanhui, ZENG Daji, ZHANG Xian, HUANG Kaikai. Exploration of Microgravity by Using the Cold Atom Interferometer in Deep Space Environment[J]. Journal of Deep Space Exploration, 2017, 4(1): 20-25. doi: 10.15982/j.issn.2095-7777.2017.01.003

冷原子干涉重力仪在深空环境下的微重力探测

doi: 10.15982/j.issn.2095-7777.2017.01.003
基金项目: 国家自然科学基金资助项目(11474254);国家重大科学研究计划项目(2012CB921602);中央高校基本科研业务费专项资金资助(2016XZZX004-01)

Exploration of Microgravity by Using the Cold Atom Interferometer in Deep Space Environment

  • 摘要:

    主要介绍了冷原子干涉的基本概念和原子干涉重力仪的发展;介绍了原子干涉的基本原理和在微重力环境下原子干涉重力仪的优势;阐述了国际上微重力环境下原子干涉重力仪的研究现状及其可能的应用。相对其他重力仪而言,原子干涉重力仪成为深空重力场测量的上佳选择,并且深空微重力环境可以有效延长原子干涉仪的干涉时间,提高仪器灵敏度。

  • [1] Kasevich M,Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters,1991,67(2):181-184.
    [2] Kasevich M,Chu S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferomter[J]. Applied Physics B:Lasers and Optics,1992,54(5):321-332.
    [3] Peters A,Chung K,Chu S. High-precision gravity measurements using atom interferometry[J]. Metrologia,2003,38(1):25-62.
    [4] Le Gouet L,Mehlstubler T,Kim J,et al. Limits to the sensitivity of a low noise compact atomic gravimeter[J]. Applied Physics B:Lasers and Optics,2008,92(2):133-144.
    [5] Cheinet P,Pereira Dos Santos F,Petelski T,et al. Compact laser system for atom interferometry[J]. Applied Physics B:Lasers and Optics,2006,84(4):643-646.
    [6] Petelski T. Atom interferometers for precision gravity measurements[D]. Firenze:Firenze University,2005.
    [7] Sorrentino F,Lien Y,Rosi G,et al. Sensitive gravity-gradiometry with atom interferometry:progress towards an improved determination of the gravitational constant[J]. New Journal of Physics,2010,12(9):474-479.
    [8] Poli N,Wang F,Tarallo M,et al. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter[J]. Physical Review Letters,2011,106(3):426-432.
    [9] Borde C. Theoretical tools for atom optics and interferometry[J]. Comptes Rendus de l'Academie des Sciences-Series IV-Physics,2001,2(3):509-530.
    [10] Berman P R. Atom interferometry[M]. New York:Academic Press,1997.
    [11] Weiss D,Young B,Chu S. Precision measurement of /mCs based on photon recoil using laser-cooled atoms and atomic interferometry[J]. Applied Physics B:Lasers and Optics,1994,59(3):217-256.
    [12] Kovachy T,Asenbaum P,Overstreet C,et al. Quantum superposition at the half-metre scale[J]. Nature,2015,528,530-533.
    [13] Müller H,Chiow S W,Herrmann S,et al. Atom interferometers with scalable enclosed area[J]. Physical Review Letters,2009,102(24):240403.
    [14] Altin P A,Johnsson M T,Negnevitsky V,et al. Precision atomic gravimeter based on Bragg diffraction[J]. New Journal of Physics,2013,15(5):23009-23027.
    [15] Mazzoni T,Zhang X,Del Aguila R,et al. Large-momentum-transfer Bragg interferometer with strontium atoms[J]. Physical Review A,2015,92(5):053619.
    [16] Zych M,Costa F,Pikovski I,et al. Quantum interferometric visibility as a witness of general relativistic proper time[J]. Physics,2011,2(3):487-502.
    [17] Pikovski I,Zych M,Costa F,et al. Universal decoherence due to gravitational time dilation,[J]. Nature Physics,2015,11(8):668-672.
    [18] Pang B H,Chen Y,Khalili F Y. Universal decoherence under gravity:a perspective through the equivalence principle[J]. Physical Review Letter,2016,117(9),090401.
    [19] Sorrentino F,Bongs K,Bouyer P,et al. The space atom interferometer project:status and prospects[J]. Journal of Physics:Conference Series,2011,327(1):111-118.
    [20] Charrière R,Cadoret M,Zahzam N,et al. Local gravity measurement with the combination of atom interferometry and Bloch oscillations[J]. Physical Review A,2011,85(1):3353-3366.
    [21] Zhang X,del Aguila R,Mazzoni T,et al. Trapped-atom interferometer with ultracold Sr atoms[J]. Physical Review A,2016,94:043608.
    [22] Sugarbaker A. Atom interferometry in a 10 m fountain[D]. PaloAlto:Stanford University,2014.
    [23] 湖北省人民政府门户网站. 原子"比萨斜塔实验"精度达10-8武汉科学家创世界纪录[EB/OL]. (2015-07-22)[2016-11-01].http://www.hubei.gov.cn/2015change/2015sq/sq/201507/t20150722_692844.shtml.
    [24] Geiger P,Ménoret V,Stern G,et al. Detecting inertial effects with airborne matter-wave interferometry[J]. Nature Communications,2011,2(1):474-474.
    [25] Müntinga H,Ahlers H,Krutzik M,et al. Interferometry with Bose-Einstein Condenstates in Microgravity,Physical Review Letters,2013,110(9):1-1.
    [26] Anderson D.The CAL science module and science instrument are in the final stages of assembly prior to system test[EB/OL].[2016-11-01]. http://coldatomlab.jpl.nasa.gov/.
    [27] Abbott B P. (LIGO Scientific Collaboration and Virgo Collaboration),observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters,2016,116:061102.
    [28] Vitale S.LISA pathfinder completes first operations phase[EB/OL].[2016-11-01].http://sci.esa.int/lisa-pathfinder.
    [29] Hogan J M,Johnson D M S,Dickerson S,et al. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)[J]. General Relativity and Gravitation,2011,43:1953-2009.
    [30] Graham P W,Hogan J M,Kasevich M A,et al. New method for gravitational wave detection with atomic sensors[J]. Physical Review Letters,2013,110(17):278-284.
    [31] Schlippert D,Hartwig J,Albers H,et al. Quantum test of the universality of free fall[J],Physical Review Letters,2014,112(20):203002.
    [32] Tarallo M G,Mazzoni T,Poli N,et al. Test of einstein equivalence principle for 0-spin:and half-integer-spin atoms:search for spin-gravity coupling effects[J]. Physical Review Letters,2014,113(2):023005.
    [33] Zhou L,Long S T,Tang B,et al. Test of equivalence principle at 10-8 Level by a dual-species double-diffraction raman atom interferometer[J]. Physical Review Letters,2015,115(1):013004.
    [34] Tino G M,Sorrentino F,Aguilera D,et al. Precision gravity tests with atom interferometry in space[J]. Nuclear Physics B Proceedings Supplements,2012,243:203-217.
    [35] Stern G,Battelier B,Geiger R,et al. GLight pulse atom interferometry in microgravity[J]. The European Physical Journal D,2009,53(3):353-357.
    [36] Gaaloul N,H. Ahlers H,Schulze T A,et al. Quantum tests of the equivalence principle with atom interferometry[J]. Acta Astronautica,2010,67(9):1059-1062.
    [37] Parker R H,Yu C,Estey B,et al. Controlling the multiport nature of bragg diffraction in atom interferometry[J]. Arxiv preprint arXiv,2016,1609:06344.
    [38] Hamann S E,Haycock D L,Klose G,et al. Resolved-sideband raman cooling to the ground state of an optical lattice[J]. Physical Review Letters,1998,80(19):4149-4152.
    [39] Thompson J D,Tiecke T G,Zibrov A S,et al. Coherence and Raman sideband cooling of a single atom in an optical tweezer[J]. Physical Review Letters,2013,110(13):428-432.
    [40] Kovachy T,Hogan J M,Sugarbaker A,et al. Matter wave lensing to picokelvin temperatures[J]. Physical Review Letters,2015,114(14):345-356.
  • [1] 于国斌.  深空探测任务协同的系统工程方法应用及趋势 . 深空探测学报(中英文), 2021, 8(4): 407-415. doi: 10.15982/j.issn.2096-9287.2021.20210036
    [2] 王卓, 徐瑞.  基于多目标优化的深空探测器姿态组合规划方法 . 深空探测学报(中英文), 2021, 8(2): 147-153. doi: 10.15982/j.issn.2096-9287.2021.20200069
    [3] 徐瑞, 李朝玉, 朱圣英, 王棒, 梁子璇, 尚海滨.  深空探测器自主规划技术研究进展 . 深空探测学报(中英文), 2021, 8(2): 111-123. doi: 10.15982/j.issn.2096-9287.2021.20210039
    [4] 陈春亮, 张正峰, 盛瑞卿, 杨孟飞.  深空探测跳跃式再入返回任务设计 . 深空探测学报(中英文), 2021, 8(3): 269-275. doi: 10.15982/j.issn.2096-9287.2021.20210016
    [5] 于登云, 张哲, 泮斌峰, 刘传凯, 丁亮, 朱继宏, 高海波, 刘金国, 陈鹏.  深空探测人工智能技术研究与展望 . 深空探测学报(中英文), 2020, 7(1): 11-23. doi: 10.15982/j.issn.2095-7777.2020.20190916001
    [6] 雷英俊, 朱立颖, 张文佳.  我国深空探测任务电源系统发展需求 . 深空探测学报(中英文), 2020, 7(1): 35-40. doi: 10.15982/j.issn.2095-7777.2020.20190712001
    [7] 牛厂磊, 罗志福, 雷英俊, 王文强, 郑见杰, 乔学荣, 罗洪义, 胡文军, 钟武烨.  深空探测先进电源技术综述 . 深空探测学报(中英文), 2020, 7(1): 24-34. doi: 10.15982/j.issn.2095-7777.2020.20200002
    [8] 叶培建, 孟林智, 马继楠, 王强, 李莹, 杜宇, 王硕.  深空探测人工智能技术应用及发展建议 . 深空探测学报(中英文), 2019, 6(4): 303-316,383. doi: 10.15982/j.issn.2095-7777.2019.04.001
    [9] 蔡明辉, 杨涛, 韩建伟.  载人深空探测磁场主动辐射防护技术研究 . 深空探测学报(中英文), 2019, 6(2): 165-172. doi: 10.15982/j.issn.2095-7777.2019.02.008
    [10] 陈莉丹, 谢剑锋, 刘勇, 陈明.  中国深空探测任务轨道控制技术综述 . 深空探测学报(中英文), 2019, 6(3): 210-218. doi: 10.15982/j.issn.2095-7777.2019.03.002
    [11] 路伟涛, 谢剑锋, 任天鹏, 韩松涛.  一种基于探测器下行信号融合处理的无线电干涉测量方法 . 深空探测学报(中英文), 2019, 6(3): 225-231. doi: 10.15982/j.issn.2095-7777.2019.03.004
    [12] 李永, 丁凤林, 周成.  深空探测推进技术发展趋势 . 深空探测学报(中英文), 2018, 5(4): 323-330. doi: 10.15982/j.issn.2095-7777.2018.04.002
    [13] 朱安文, 刘磊, 马世俊, 李明.  空间核动力在深空探测中的应用及发展综述 . 深空探测学报(中英文), 2017, 4(5): 397-404. doi: 10.15982/j.issn.2095-7777.2017.05.001
    [14] 胡宇鹏, 鲁亮, 向延华, 李思忠, 胡文军, 胡绍全.  深空探测器同位素热源环境试验技术 . 深空探测学报(中英文), 2017, 4(2): 138-142. doi: 10.15982/j.issn.2095-7777.2017.02.006
    [15] 张国万, 李嘉华.  冷原子干涉技术原理及其在深空探测中的应用展望 . 深空探测学报(中英文), 2017, 4(1): 14-19. doi: 10.15982/j.issn.2095-7777.2017.01.002
    [16] 张建琴, 徐建明, 贾巍, 邱宝贵, 肖杰.  深空探测太阳电池阵应用及关键技术分析 . 深空探测学报(中英文), 2016, 3(1): 3-9. doi: 10.15982/j.issn.2095-7777.2016.01.001
    [17] 刘庆会, 吴亚军.  高精度VLBI技术在深空探测中的应用 . 深空探测学报(中英文), 2015, 2(3): 208-212. doi: 10.15982/j.issn.2095-7777.2015.03.003
    [18] 王伟, 马彦涵, 周易倩, 方宝东.  深空探测磁动力技术研究进展 . 深空探测学报(中英文), 2015, 2(3): 203-207. doi: 10.15982/j.issn.2095-7777.2015.03.002
    [19] 张大鹏, 雷勇军.  深空探测返回舱着陆冲击动力学分析 . 深空探测学报(中英文), 2014, 1(2): 150-155.
    [20] 吴伟仁, 于登云.  深空探测发展与未来关键技术 . 深空探测学报(中英文), 2014, 1(1): 5-17.
  • 加载中
计量
  • 文章访问数:  2390
  • HTML全文浏览量:  63
  • PDF下载量:  1267
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-01
  • 修回日期:  2016-12-14
  • 刊出日期:  2017-02-01

冷原子干涉重力仪在深空环境下的微重力探测

doi: 10.15982/j.issn.2095-7777.2017.01.003
    基金项目:  国家自然科学基金资助项目(11474254);国家重大科学研究计划项目(2012CB921602);中央高校基本科研业务费专项资金资助(2016XZZX004-01)

摘要: 

主要介绍了冷原子干涉的基本概念和原子干涉重力仪的发展;介绍了原子干涉的基本原理和在微重力环境下原子干涉重力仪的优势;阐述了国际上微重力环境下原子干涉重力仪的研究现状及其可能的应用。相对其他重力仪而言,原子干涉重力仪成为深空重力场测量的上佳选择,并且深空微重力环境可以有效延长原子干涉仪的干涉时间,提高仪器灵敏度。

English Abstract

陆璇辉, 曾大吉, 章显, 黄凯凯. 冷原子干涉重力仪在深空环境下的微重力探测[J]. 深空探测学报(中英文), 2017, 4(1): 20-25. doi: 10.15982/j.issn.2095-7777.2017.01.003
引用本文: 陆璇辉, 曾大吉, 章显, 黄凯凯. 冷原子干涉重力仪在深空环境下的微重力探测[J]. 深空探测学报(中英文), 2017, 4(1): 20-25. doi: 10.15982/j.issn.2095-7777.2017.01.003
LU Xuanhui, ZENG Daji, ZHANG Xian, HUANG Kaikai. Exploration of Microgravity by Using the Cold Atom Interferometer in Deep Space Environment[J]. Journal of Deep Space Exploration, 2017, 4(1): 20-25. doi: 10.15982/j.issn.2095-7777.2017.01.003
Citation: LU Xuanhui, ZENG Daji, ZHANG Xian, HUANG Kaikai. Exploration of Microgravity by Using the Cold Atom Interferometer in Deep Space Environment[J]. Journal of Deep Space Exploration, 2017, 4(1): 20-25. doi: 10.15982/j.issn.2095-7777.2017.01.003
参考文献 (40)

目录

    /

    返回文章
    返回