中文核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校优秀科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星着陆自主导航方案研究进展

崔平远 高艾 于正湜

崔平远, 高艾, 于正湜. 火星着陆自主导航方案研究进展[J]. 深空探测学报(中英文), 2014, 1(1): 18-27.
引用本文: 崔平远, 高艾, 于正湜. 火星着陆自主导航方案研究进展[J]. 深空探测学报(中英文), 2014, 1(1): 18-27.
CUI Pingyuan, GAO Ai, YU Zhengshi. Research Progress of Autonomous Navigation Scheme for Mars Landing[J]. Journal of Deep Space Exploration, 2014, 1(1): 18-27.
Citation: CUI Pingyuan, GAO Ai, YU Zhengshi. Research Progress of Autonomous Navigation Scheme for Mars Landing[J]. Journal of Deep Space Exploration, 2014, 1(1): 18-27.

火星着陆自主导航方案研究进展

基金项目: 国家重点基础研究发展计划(973计划)(2012CB720000);国家自然科学基金资助项目(61374216,61304248,61304226);高等学校博士学科点专项科研基金资助项目(20111101110001);北京理工大学创新团队基金资助项目

Research Progress of Autonomous Navigation Scheme for Mars Landing

  • 摘要: 火星着陆导航技术是火星着陆过程的核心技术之一。围绕火星着陆环境特点与导航技术遇到的挑战,分析了目前火星着陆过程的导航能力和自主导航的发展趋势,并针对火星着陆过程的特殊性和导航需求,概述了火星着陆过程各阶段自主导航方案的研究现状与进展。进而从导航方案设计与配置、导航模型建立与仿真、导航方案性能分析等方面,对自主导航方案的最新研究进展进行了分析,并在火星着陆全过程自主导航方案综合仿真的基础上,获得了满足火星定点着陆要求的各阶段交接点应满足的导航精度。最后,基于目前技术现状和发展趋势,提出了构建“递进式三阶段”火星着陆自主导航方案的设想,可为未来火星着陆自主导航方案的设计与论证提供参考。
  • [1] Braun R D, Manning R M. Mars exploration entry, descent, and landing challenges [J].Journal of Spacecraft and Rockets,2007, 44(2):310一323.[2]崔平远,于正提,朱圣英.火星进人段自主导航技术研究现状与展望[J].宇航学报,2013,34(4):447一456.[Cui P Y, Yu Z S, Zhu S Y. Research progress and prospect of autonomous navigation techniques for Mars entry phase[J].Journal of Astronautics, 2013,34(4):447一456.][3]Steinfeldt B A, Grant M J, Matz D A, et al. Guidance, navigation, and control system performance trades for Mars pinpoint landing[J].Journal of Spacecraft and Rockets, 2010,47(1):188一198.[4]Levesque J F. Advanced navigation and guidance for high-precision planetary landing on Mars[ D].Canada: Universite de Sherbrooke, 2006.[5]Edquist K T, Hollis B R, Dyakonov A A. Mars science laboratory entry capsul aemthermodynamics and thermal protection system[C]. IEEE Aerospace Conference, Big Sky, Montana, Mar. 3一10, 2007.[6]Ely T A, Guinn J, Quintanilla E. Navigation services of the Mars network[C].The 59th Annual Meeting of the Institute of Navigation and CIGTF 22nd Guidance Test Symposium. Albuquerque, New Mexico, Jun. 23一25,2003.[7]Oberhettinger D, Skulsky E D, Bailey E S. Assessment of Mars Phoenix EDL performance[C].2011 IEEE Aerospace Conference, Big Sky, MT, Mar. 5一12, 2011.[8]Spencer D A, Blanchard R C, Braun R D, et al. Mars Pathfinder entry, descent, and landing reconstmction[J].Journal of Spacecraft and Rockets , 1999 , 36 ( 3 ) :357一366.[9]Cheng Y, Goguen J, Johnson A, et al. The Mars exploration rovers descent image motion estimation system[J].IEEE Intelligent Systems , 2004 , 19 ( 3 ):13一21.[10]Johnson A, Willson R, Cheng Y, et al. Design through operation of an image- based velocity estimation system for Mars landing [J].International Journal of Computer Vision, 2007,74(3):319一341.[11]Pollard B D , Chen C W. A radar terminal descent sensor for the Mars Science Laboratory mission[C].2009 IEEE Aerospace Conference, Big Sky, MT, Mar. 7一14 , 2009.[12]Montgomery J, Bodie J, Bmwn J, et al. Implementing the Mars Science Laboratory terminal descent sensor field test campaign[C],The 35th Annual AAS Rocky Mountain Guidance and Control Conference, Breeckenridge, C0, Feb. 2012.[13]Rush B, Bhaskaran S. Improving Mars approach navigation using optical data[C].2001 AAS/AL4A Astmdynamics Specialist Conference, Quebec City, Canada, Jul. 30一Aug. 2 , 2001.[14]Ely T A, Guinn J R. Mars approach navigation using Mars network based doppler tracking [ C ].Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, CA, Aug. 2002.[15]Lightsey E G, Mogensen A E. Real-time navigation for Mars missions using the Mars network [ J ].Journal of Spacecraft and Rockets, 2008,45(3):519一533.[16]Chester T J, Butman S A. Navigation using X-ray pulsars[ R].Washington, DC, NASA Technical Reports N81一27129, Jun.1981.[17]Graven P, Collins J, Sheikh S, et al. XNAV for deep space navigation[C].31 st Annual AAS Guidance and Control Conference, Breckenridge, CO, Feb. 2008.[18]Sheikh S I, Pines D J, Wood K S, et al. Spacecraft navigation using X-ray pulsars[J].Journal of Guidance, Control, and Dynamics , 2006 , 29 (1):49一63.[19]Ely T A, Bishop R H, Dubois-Matra 0. Robust entry navigation using hierarchical filter architectures regulated with gating networks[C].16th International Symposium on Spaceffight Dynamics Symposium, Pasadena, CA, Dec. 3一6 , 2001.[20]Levesque J F, L,afontaine J D. Innovative navigation schemes for state and parameter estimation during Mars entry } J ] .Journal of Guidance, Control, and Dynamics, 2007,30(1): 169一184.[21]Heyne M C. Spacecraft precision entry navigation using an adaptive sigma point Kalman filter bank } D ].Austin, TX: The University of Texas at Austin, 2007.[22]Dubois-Matra 0, Bishop R H. Multi-model navigation with gating networks for Mars entry precision landing[C].AIAA Atmospheric Flight Mechanics Conference, Providence, RI,Aug. 16一19,2004.[23]Zanetti R, Bishop R H. Adaptive entry navigation using inertial measurements[C].17th AAS/AIAA Annual Space Flight Mechanics Meeting, Sedona, AZ, Jan. 28一Feb. 1,2007.[24]Morabito D D. The Spacecraft comm nications blackout problem encountered during passage or entry of planetary atmospheres[ R ] .Pasadena, California: Jet Propulsion Laboratory, August 2002.[25]Ely T A, Anderson R, Bar-Sever Y E, et al. Mars network constellation design drivers and strategies[C].The AAS/AIAA Astrodynamics Conference, Girdwood, Alaska, Aug. 16一19, 1999.[26]Woicke S, Mooij E. Stereo-vision algorithm for hazard detection during planetary landings[C]. AIAA Guidance, Navi}tion, and Control Conference, National Harbor, Maryland,Jan.13一17, 2014.[27]Liebe C C, Padgett C, Chapsky J, et al. Spacecraft hazard avoidance utilizing structured light[C].IEEE Aerospace Conference, Big Sky, MT, Mar. 4一11,2006.[28] Kanazawa S, Fukuda S, Sawai S, et al. Autonomous precision landing system with avoidance system using single camera for small landers[C],51 st AL4A Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, Jan. 7一10, 2013.[29] Parreira B, Vasconcelos J F, Montano J, et al. Hazard detection and avoidance in ESA lunar lander; concept and performance[C].Guidance, Navigation, and Control and Co-located Conferences, Boston, MA, Aug. 19一22, 2013.[30] Amzajerdian F, Petway L B, Hines G D, et al. Lidar sensors for autonomous landing and hazard avoidance[C]. SPACE Conferences and Exposition, San Diego, CA, Sep. 10一12, 2013.[31]Edwards C, Jedrey T, Schwartzbaum E, et al. Proximity-1 space link protocol一rationale, architecture, and scenarios[R]. Washington DC, USA; National Aeronautics and Space Administration, Aug. 2007.[32]Satorius E, Jedrey T, Bell D, et al. The Electra radio, Chapter2 in autonomous software一:lefined radio receivers for deep space applications [ M ],Hoboken,New Jersey: John Wiley&Sons, 2006.[33] De Sanctis M, Rossi T, Lucente M, et al. Flower constellation of orbiters for Martian communication [ C ].2007 IEEE Aerospace Conference, Big Sky, MT, Mar. 3一10, 2007.[34] Cui P, Yu Z, Zhu S, et al. Real-time navigation for Mars final approach using X-ray pulsars[ C].AIAA Guidance , Navigation , and Control Conference, Boston, MA, Aug. 19一22 , 2013.[35]Thornton C L, Border J S. Radiometric tracking techniques for deep-space navigation[M].Hoboken, New Jersey; Wiley& Sons, 2003.[36]Martin-Mur T J, Kruizinga G L, Wong M C. Mars science laboratory interplanetary navigation analysis[C].The 22nd International Symposium on Space Flight Dynamics, San Jose dos Campos , Brazil , 2011.[37〕崔平远,窦强,高艾.火星大气进人段通信“黑障”问题研究综述[J].宇航学报,2014,35(1):1一12.[Cui P Y, Dou Q, Gao A. Review of communication blackout problems encountered during Mars entry phase[ J].Journal of Astronautics, 2014, 35 (1):1一12].[38] Yu Z, Cui P, Zhu S. Observability-based beacon configuration optimization for Mars entry navigation[J]. Journal of Guidance, Control , and Dynamics , ( 2014 ),accessed Feb. 19 , 2014, doi ; http ; //arc .aiaa. org/doi/abs/10. 2514/1. 6000014.[39] Qin T, Zhu S, Cui P. An innovative navigation scheme of powered descent phase for Mars pinpoint landing[J].Advances in Space Research, Under Review.
  • [1] 冀红霞, 宗红, 黄翔宇.  基于改进预测滤波的小天体精确着陆自主导航方法研究 . 深空探测学报(中英文), 2019, 6(3): 284-292. doi: 10.15982/j.issn.2095-7777.2019.03.013
    [2] 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明.  深空探测器自主控制技术综述 . 深空探测学报(中英文), 2019, 6(4): 317-327. doi: 10.15982/j.issn.2095-7777.2019.04.002
    [3] 马辛, 宁晓琳, 刘劲, 刘刚.  一种平面约束辅助测量的深空探测器自主天文导航方法 . 深空探测学报(中英文), 2019, 6(3): 293-300. doi: 10.15982/j.issn.2095-7777.2019.03.014
    [4] 宁晓琳, 桂明臻, 孙晓函, 刘劲, 吴伟仁.  一种基于太阳震荡时间延迟量测的自主天文导航方法 . 深空探测学报(中英文), 2019, 6(1): 88-95. doi: 10.15982/j.issn.2095-7777.2019.01.013
    [5] 黄翔宇, 徐超, 胡荣海, 李茂登, 郭敏文, 胡锦昌.  火星精确定点着陆多信息融合自主导航与控制方法研究 . 深空探测学报(中英文), 2019, 6(4): 348-357. doi: 10.15982/j.issn.2095-7777.2019.04.006
    [6] 郝万宏, 董光亮, 李海涛, 王宏, 樊敏, 周欢, 徐得珍.  火星大气进入下降着陆段测控通信关键技术研究 . 深空探测学报(中英文), 2018, 5(5): 426-434. doi: 10.15982/j.issn.2095-7777.2018.05.004
    [7] 张国万, 李嘉华.  冷原子干涉技术原理及其在深空探测中的应用展望 . 深空探测学报(中英文), 2017, 4(1): 14-19. doi: 10.15982/j.issn.2095-7777.2017.01.002
    [8] 王春锋.  卫星编队自主相对导航与通信一体化系统探讨 . 深空探测学报(中英文), 2017, 4(1): 38-42. doi: 10.15982/j.issn.2095-7777.2017.01.006
    [9] 王亚敏, 刘银雪, 蒋峻, 孙煜坤, 张永合.  基于引力场不对称性的三体系统轨道自主导航 . 深空探测学报(中英文), 2017, 4(1): 26-30,37. doi: 10.15982/j.issn.2095-7777.2017.01.004
    [10] 郑伟, 张璐, 王奕迪.  基于星联网的深空自主导航方案设计 . 深空探测学报(中英文), 2017, 4(1): 31-37. doi: 10.15982/j.issn.2095-7777.2017.01.005
    [11] 欧阳威, 张洪波, 郑伟.  环火星自主导航系统设计及参数优化研究 . 深空探测学报(中英文), 2017, 4(1): 43-50. doi: 10.15982/j.issn.2095-7777.2017.01.007
    [12] 汪梁, 赵方方, 陈翠桥, 徐照钱.  粒子滤波在自主天文导航系统中的性能评估和应用 . 深空探测学报(中英文), 2016, 3(3): 246-252. doi: 10.15982/j.issn.2095-7777.2016.03.008
    [13] 陈晓, 尤伟, 黄庆龙.  火星探测巡航段天文自主导航方法研究 . 深空探测学报(中英文), 2016, 3(3): 214-218. doi: 10.15982/j.issn.2095-7777.2016.03.003
    [14] 于正湜, 崔平远.  行星着陆自主导航与制导控制研究现状与趋势 . 深空探测学报(中英文), 2016, 3(4): 345-355. doi: 10.15982/j.issn.2095-7777.2016.04.006
    [15] 徐超, 王大轶, 黄翔宇.  基于陆标图像的火星精确着陆自主导航方法研究 . 深空探测学报(中英文), 2016, 3(2): 150-155. doi: 10.15982/j.issn.2095-7777.2016.02.009
    [16] 高锡珍, 邵巍, 冷君阁, 席莎.  一种基于陨石坑拟合椭圆的着陆器位姿估计算法 . 深空探测学报(中英文), 2015, 2(3): 241-245. doi: 10.15982/j.issn.2095-7777.2015.03.009
    [17] 魏二虎, 杨洪洲, 张帅, 刘经南, 易慧.  脉冲星非实时平差的火星探测自主导航模型 . 深空探测学报(中英文), 2014, 1(4): 298-302. doi: 10.15982/j.issn.2095-7777.2014.04.009
    [18] 吴超, 赵振华, 杨俊, 李世华, 郭雷.  基于约束预测控制的火星大气进入轨迹跟踪 . 深空探测学报(中英文), 2014, 1(2): 128-133.
    [19] 王大铁, 李骥, 黄翔宇, 张洪华.  月球软着陆过程高精度自主导航避障方法 . 深空探测学报(中英文), 2014, 1(1): 44-51.
    [20] 黄翔宇, 张洪华, 王大铁, 李骥, 关软峰, 王鹏基.  “嫦娥三号”探测器软着陆自主导航与制导技术 . 深空探测学报(中英文), 2014, 1(1): 52-59.
  • 加载中
计量
  • 文章访问数:  2975
  • HTML全文浏览量:  58
  • PDF下载量:  1696
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-01
  • 修回日期:  2013-10-03

火星着陆自主导航方案研究进展

    基金项目:  国家重点基础研究发展计划(973计划)(2012CB720000);国家自然科学基金资助项目(61374216,61304248,61304226);高等学校博士学科点专项科研基金资助项目(20111101110001);北京理工大学创新团队基金资助项目

摘要: 火星着陆导航技术是火星着陆过程的核心技术之一。围绕火星着陆环境特点与导航技术遇到的挑战,分析了目前火星着陆过程的导航能力和自主导航的发展趋势,并针对火星着陆过程的特殊性和导航需求,概述了火星着陆过程各阶段自主导航方案的研究现状与进展。进而从导航方案设计与配置、导航模型建立与仿真、导航方案性能分析等方面,对自主导航方案的最新研究进展进行了分析,并在火星着陆全过程自主导航方案综合仿真的基础上,获得了满足火星定点着陆要求的各阶段交接点应满足的导航精度。最后,基于目前技术现状和发展趋势,提出了构建“递进式三阶段”火星着陆自主导航方案的设想,可为未来火星着陆自主导航方案的设计与论证提供参考。

English Abstract

崔平远, 高艾, 于正湜. 火星着陆自主导航方案研究进展[J]. 深空探测学报(中英文), 2014, 1(1): 18-27.
引用本文: 崔平远, 高艾, 于正湜. 火星着陆自主导航方案研究进展[J]. 深空探测学报(中英文), 2014, 1(1): 18-27.
CUI Pingyuan, GAO Ai, YU Zhengshi. Research Progress of Autonomous Navigation Scheme for Mars Landing[J]. Journal of Deep Space Exploration, 2014, 1(1): 18-27.
Citation: CUI Pingyuan, GAO Ai, YU Zhengshi. Research Progress of Autonomous Navigation Scheme for Mars Landing[J]. Journal of Deep Space Exploration, 2014, 1(1): 18-27.
参考文献 (1)

目录

    /

    返回文章
    返回