高级检索

基于深度学习的月球南极连续光照区智能提取方法

Intelligent Identification of Continuously Illuminated Regions at Lunar South Pole Based on Deep Learning

  • 摘要: 以位于沙克尔顿(Shackleton)和德格拉什(de Gerlache)陨石坑之间连接脊为研究区域,基于2026年11月1日-2027年2月28日实时光照仿真数据,构建了光照数据集模型和空间分辨率20 m/pixel、时间分辨率1 h的动态光照数据集。提出了连续3 d光照友好区智能提取深度学习模型,改进甚深卷积(Visual Geometry Group,VGG)网络提取单一时刻光照友好区域,利用双向门控循环单元网络提取光照时序特征,使用一致性时间注意力和空间注意力机制实现对时空光照关键特征的识别和捕捉,构建输出头网络得到连续3 d光照友好区域。进一步基于输出的连续光照区域和8方向巡视器导航模型改进太阳同步A*路径规划算法。仿真实验结果表明,提出的模型在20 m/pixel空间分辨率动态光照数据集可准确识别和检测连续3 d光照友好区域,实现巡视器在光照充足区域内的高效路径规划。

     

    Abstract: Taking the connecting ridge between Shackleton and de Gerlache craters as the research area, based on real-time illumination simulation data from November 1, 2026, to February 28, 2027, a dynamic illumination dataset with a spatial resolution of 20 m/pixel and a temporal resolution of 1 hour was constructed. A deep-learning framework is proposed to recognize regions with continuous 3-day illumination, in which an improved VGG network extracts illumination-friendly regions from each temporal frame, a bidirectional GRU network captures temporal illumination characteristics, and a consistent temporal-spatial attention mechanism highlights key spatiotemporal illumination features. An output head network integrates these features to generate target regions. Based on the extracted regions and an eight-direction rover mobility model, a Sun-synchronous A* path planning algorithm is further optimized to enable illumination-aware navigation. Simulation results demonstrate that the proposed method accurately recognizes 3-day consecutive illumination-friendly regions in the 20 m/pixel dynamic dataset and effectively supports efficient rover path planning in well-illuminated areas of the lunar south pole.

     

/

返回文章
返回