高级检索

基于深度学习的月球南极连续光照区智能提取方法

Deep Learning-Based Analysis for Intelligent Identification of Continuously Illuminated Regions at Lunar South Pole

  • 摘要: 以位于沙克尔顿(Shackleton)和德格拉什(de Gerlache)陨石坑之间连接脊为研究区域,基于2026年11月1日-2027年2月28日实时光照仿真数据,构建了光照数据集模型和空间分辨率20 m/pixel、时间分辨率1 h的动态光照数据集。提出了连续3 d光照友好区智能提取深度学习模型,改进甚深卷积(Visual Geometry Group,VGG)网络提取单一时刻光照友好区域,利用双向门控循环单元网络提取光照时序特征,使用一致性时间注意力和空间注意力机制实现对时空光照关键特征的识别和捕捉,构建输出头网络得到连续3 d光照友好区域。进一步基于输出的连续光照区域和8方向巡视器导航模型改进太阳同步A*路径规划算法。仿真实验结果表明,提出的模型在20 m/pixel空间分辨率动态光照数据集可准确识别和检测连续3 d光照友好区域,实现巡视器在光照充足区域内的高效路径规划。

     

    Abstract: This study examines the lunar south pole environment centered on the connecting ridge between Shackleton and de Gerlache craters, leveraging illumination simulations from November 1st, 2026, to February 28th, 2027, to generate a dynamic illumination dataset with a spatial resolution of 20 m/pixel and a temporal resolution of 1 hour. A novel deep learning framework is introduced to identify regions with at least three consecutive days of continuous illumination. The framework integrates an enhanced deep convolutional neural network to extract illumination features from individual temporal frames with a bidirectional gated recurrent unit to model temporal dependencies across sequences. A dual temporal-spatial attention mechanism evaluates illumination continuity, assigns spatiotemporal weights, and emphasizes critical features, while an upsampling output head produces high-resolution maps. The model demonstrates superior performance in extracting stable features from sequential data, enabling precise detection of three-day persistent illumination regions at a 20 m resolution. When coupled with an optimized A* algorithm, the framework supports efficient rover path planning.

     

/

返回文章
返回