高级检索

临界尺度月壤颗粒辨识集成学习方法

Critical-Scale Lunar Soil Particle Identification Based on Ensemble Learning

  • 摘要: 针对月壤中临界尺度月壤颗粒对钻探过程中的影响,提出了一种基于集成学习算法的临界尺度月壤颗粒参数辨识模型。使用离散元仿真软件(Discrete Element Method,DEM)进行建模分析,通过中央复合试验设计(Central Composite Design,CCD)构建多种工况,获得不同条件下月壤钻具的负载特性。以临界尺度月壤颗粒大小与偏置位置为核心变量,采集钻进过程中钻扭矩的信息,并提取关键特征值,在此基础上,首次引入集成学习算法用于临界尺度月壤颗粒参数辨识,构建了同时识别颗粒大小与偏置位置的双变量模型,试验结果表明:该模型在颗粒位置预测方面表现优异,其均方误差MSE达到0,预测精度极高;而在颗粒尺寸识别方面也具有良好性能,MSE为1.61。该模型有效解决了“颗粒尺寸与位置不可直接观测”情况下的参数辨识难题,研究结果可为无人钻探取样的辨识模型技术建立提供参考。

     

    Abstract: To investigate the influence of critical-sized lunar regolith particles on the drilling process, a parameter identification model based on ensemble learning algorithms is proposed. Discrete Element Method (DEM) simulation software is employed for modeling and analysis. Various working conditions are constructed using Central Composite Design (CCD), enabling the acquisition of load characteristics of lunar drilling tools under different scenarios. Focusing on the size and offset position of critical-sized particles as core variables, drilling torque data are collected throughout the drilling process, from which key feature values are extracted. On this basis, ensemble learning algorithms are introduced for the first time to identify parameters of critical-sized lunar particles, resulting in the development of a bivariate model capable of simultaneously identifying both particle size and position. Experimental results show that the model demonstrates exceptional performance in predicting particle position, achieving a mean squared error MSE of 0, indicating extremely high prediction accuracy. For particle size identification, the model also performs well, with an MSE of 1.61. This model effectively addresses the challenge of parameter identification under conditions where particle size and position cannot be directly observed. The findings provide a valuable reference for the development of identification model techniques in unmanned drilling and sampling applications.

     

/

返回文章
返回