Abstract:
A lot of dust particles are ejected from the surfaces of the Jovian irregular moons by the impact of interplanetary meteoroids. In this paper, the dynamics of dust particles originating from the irregular satellites in the complicated Jupiter system with various perturbation forces were studied, using both the analytical method and the numerical simulation method. By analyzing the conserved effective Hamiltonian quantity and phase portraits in the orbit-averaged model that describes the long-term evolution of motion of dust, it is concluded that dust particles originating from the prograde satellites tend to be distributed in the direction away from the Sun, while dust particles originating from the retrograde satellite are predominantly distributed in the direction towards the Sun. With long-term numerical simulation, it is found that the orbits of particles originating from prograde satellites are more stable than those of particles originating from retrograde satellites, and the orbital stabilities of large-size dust particles are greater than those of small-size particles.