高级检索
王鑫, 赵清杰, 徐瑞. 基于知识图谱的深空探测器任务规划建模[J]. 深空探测学报(中英文), 2021, 8(3): 315-323. DOI: 10.15982/j.issn.2096-9287.2021.20210030
引用本文: 王鑫, 赵清杰, 徐瑞. 基于知识图谱的深空探测器任务规划建模[J]. 深空探测学报(中英文), 2021, 8(3): 315-323. DOI: 10.15982/j.issn.2096-9287.2021.20210030
WANG Xin, ZHAO Qingjie, XU Rui. Modeling of Mission Planning for Deep Space Probe Based on Knowledge Graph[J]. Journal of Deep Space Exploration, 2021, 8(3): 315-323. DOI: 10.15982/j.issn.2096-9287.2021.20210030
Citation: WANG Xin, ZHAO Qingjie, XU Rui. Modeling of Mission Planning for Deep Space Probe Based on Knowledge Graph[J]. Journal of Deep Space Exploration, 2021, 8(3): 315-323. DOI: 10.15982/j.issn.2096-9287.2021.20210030

基于知识图谱的深空探测器任务规划建模

Modeling of Mission Planning for Deep Space Probe Based on Knowledge Graph

  • 摘要: 设计具有任务自主规划能力的深空柔性多智能体探测器是未来深空探测技术研究和发展的重要方向。针对多智能体深空探测器在任务规划时涉及的对象多、约束复杂、深空环境不确定,以及传统的任务规划语言无法对其进行准确、直观、简洁描述的问题,提出基于知识图谱的多智能体深空探测器的知识表示方法。该方法首先对探测器系统进行知识抽取,然后通过知识融合将系统设备及其状态和动作进行关联,最后采用知识加工挖掘多智能体之间潜在的关系。通过与MA-PDDL方法进行对比,验证所提出的方法简单、直观,更有利于探测器实现自主、灵活、准确的任务规划。

     

    Abstract: Designing a deep-space flexible multi-agent probe capable of autonomous task planning is an important direction for future research and development of deep space exploration technology. Multi-agent deep-space probes involve multiple objects, complex constraints and the uncertain deep space environment in mission planning, but traditional mission planning languages may not describe mission planning accurately, intuitively and concisely. In this paper, a knowledge graph is proposed to represent the planning knowledge for a multi-agent deep space probe. The method first carries out knowledge extraction from the deep space probe, then associates the probe with its state and actions by knowledge fusion, and finally mines the potential relationships between agents by knowledge processing. Compared with MA-PDDL, the method proposed in this paper is simpler and more intuitive, which enables the probe to describe its mission planning autonomously, flexibly, and accurately.

     

/

返回文章
返回