高级检索
曹知远, 李翔宇, 乔栋. 面向太阳系边际探测的多天体借力目标选择方法[J]. 深空探测学报(中英文), 2020, 7(6): 536-544. DOI: 10.15982/j.issn.2096-9287.2020.20200068
引用本文: 曹知远, 李翔宇, 乔栋. 面向太阳系边际探测的多天体借力目标选择方法[J]. 深空探测学报(中英文), 2020, 7(6): 536-544. DOI: 10.15982/j.issn.2096-9287.2020.20200068
CAO Zhiyuan, LI Xiangyu, QIAO Dong. Target Selection of Multiple Gravity-Assist Trajectories for Solar Boundary Exploration[J]. Journal of Deep Space Exploration, 2020, 7(6): 536-544. DOI: 10.15982/j.issn.2096-9287.2020.20200068
Citation: CAO Zhiyuan, LI Xiangyu, QIAO Dong. Target Selection of Multiple Gravity-Assist Trajectories for Solar Boundary Exploration[J]. Journal of Deep Space Exploration, 2020, 7(6): 536-544. DOI: 10.15982/j.issn.2096-9287.2020.20200068

面向太阳系边际探测的多天体借力目标选择方法

Target Selection of Multiple Gravity-Assist Trajectories for Solar Boundary Exploration

  • 摘要: 太阳系边际探测将增进人类对太阳系形成与演化的认知,是未来深空探测的重要方向。由于太阳系边际距离地球遥远,探测所需轨道能量大,利用多天体借力飞行是实现太阳系边际探测的必然选择。研究了面向太阳系边际探测的多天体借力目标选择问题。给出了两种多天体借力动力学模型,并评估了两种模型各自的优势。基于太阳系边际探测的约束与目标处理方法,提出了一种结合两种多天体借力模型的逐步多层嵌套优化方法,并给出设计步骤,实现不同任务约束下太阳系边际探测多天体借力转移轨道优化设计。以2030—2040年针对太阳系鼻尖与尾部探测为例,给出了最优多天体轨道飞行序列排序,验证了所提方法的有效性。仿真结果表明,针对太阳系鼻尖的最优多天体借力序列为地球–金星–地球–地球–木星–土星–太阳系边际鼻尖,而针对太阳系尾部的最优序列为地球–金星–地球–地球–木星–海王星–太阳系边际尾部,研究可以为我国未来太阳系边际探测目标选择与任务规划提供参考。

     

    Abstract: Solar system boundary exploration will enhance our understanding of the formation and evolution of the Solar system, which is an important issue of future deep space exploration. As the boundary is far from Earth, the energy needed in the exploration is huge. Thus, gravity-assist technique is essential to carry out Solar system boundary exploration mission. This paper aims at multiple gravity-assist transfer design in Solar system boundary exploration missions. First, processing method of goals and constraints in Solar system boundary exploration are studied. And a progressive nested-loop optimization method combining two different kinds of multiple gravity-assist dynamics is provide, as well as the detailed steps. At last, taking the nose and the tail of Solar system boundary for example, the optimal fly-by sequences are provided, proofing the validity of the method. The simulations demonstrates that the optimal multiple gravity –assists trajectories is Earth-Venus-Earth-Earth-Jupiter-Saturn- nose of Solar system, and the optimal multiple gravity –assists trajectories is Earth-Venus-Earth-Earth-Neptune-tail of Solar system. The research will provide the reference for the target selection and mission planning for future Solar system exploration in China.

     

/

返回文章
返回