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Fig. 5 The influence of different positions on the lunar surface on the observation of outgoing radiation at the top of the atmosphere
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Characteristics Analysis of Moon-Based Monitoring of Earth’s Outgoing Radiation at

the Top of Atmosphere

YE Hanlin', DENG Yu’, LIU Guang’, GUO Huadong”’
(1. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China ;

2. School of Earth and Space Science, Peking University, Beijing 100871, China;

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

Abstract: Due to the uncertainty of parameter design of the Moon-based radiometer, the characteristics of Moon-based Earth’s

outgoing radiation at the top of the atmosphere were investigated. Based on the single-point observation geometry for a Moon-based

platform, this paper analyzed observational characteristics and data of different Moon-based platforms’ positions on the lunar surface,

and the observational sampling characteristics. The results indicate that the orbit of the Moon is with variable orbital inclination and

variant observation distances from the Earth, and equipping a radiometer on the lunar surface can sample the whole Earth’s surface

within one orbital period. In addition, the suggested dynamic range is from 5.50x107 to 8.50x10° W/m’, its temporal sampling

interval is no more than 4 hours, and the accumulative sampling period is one orbital period (27.3 days). The above results provide an

important basis for the design of the Moon-based radiometer.

Keywords: Earth’s outgoing radiation at the top of atmosphere; Moon-based Earth observations; observation geometry;

temporal sampling

Highlights:

e Single-point observation geometry was used in the Moon-based Earth’s outgoing radiation monitoring.

e It is proved that the whole Earth’s surface can be monitored within one orbital period.

e Suggested dynamic range that is from 5.50x10~ to 8.50x10° W-m was obtained.

e Sampling interval and accumulative sampling period were estimated.
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