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Geometric Simulation of Earth’s Outgoing Radiation

Viewed from a Moon-Based Platform
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Abstract: Due to the characteristics of integrity, multi-angle and long period, a Moon-based platform is expected to accurately

estimate Earth outgoing radiation. To evaluate this platform’s capabilities, this paper established a one-to-one mapping algorithm

based on the geometric relationship and used the Goddard Earth Observing System model version 5 (GEOS-5) data as model input to

simulate Earth’s outgoing radiation viewed from a Moon-based platform, so as to learn about the regularity of Earth outgoing

radiation viewed from the Moon-based platform. Results show that a Moon-based platform can cover about 178° both in latitudinal

and longitudinal direction in one image, including the polar regions. The changing inclination of the orbit of the Moon gives a better

observation condition for high latitude regions, and the viewing zenith angle in polar regions can reach to 60°. These results indicate

the simulation method can effectively support the observation of Earth’s outgoing radiation observation and lay the foundation for

future research.

Keywords: Moon-based Earth observation; Earth outgoing radiation; simulation study; geometric modelling

Highlights:

e A simulation method for Earth outgoing radiation viewed from a Moon-based platform is proposed based on one-to-one mapping

method considering observation geometry of the Earth and the Moon.

e Experiments of Earth outgoing longwave and shortwave radiation viewed from a Moon-based sensor in one year are carried out

and the regularity is found out according to the characteristics of the lunar orbit.

e The characteristics of spatial coverage and angular distribution are analyzed.

e The simulation method can effectively support the observation of Earth’s outgoing radiation and lay the foundation for future

research.
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