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Table1 The D-H parameters of the manipulator

i o/ (°) a.ql (°) a ;. /mm d/mm
1 6, 90 0 101.0
2 6, 0 0 85.5
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Path Planning of Lunar Surface Sampling Manipulator for Chang'E-5 Mission

HU Xiaodong, ZHANG Kuan, XIE Yuan, ZHANG Hui, LU Hao, LIU Chuankai, CHEN Xiang,
ZHAO Huanzhou, XIE Jianfeng

(Beijing Aerospace Control Center, Beijing 100094, China)

Abstract: Aiming at the problem of precise control of the sampling manipulator in the lunar surface sampling mission of
"Chang'E-5", a path planning method based on deep reinforcement learning is proposed. By designing the multi-constraint reward
function of the deep reinforcement learning algorithm, a motion path that satisfies the three constraints of safety, speed and
reachability is planned. The precise control of the sampling robotic arm is realized. Under the advance of meeting the task safety,
the interaction time between heaven and earth is greatly shortened, and the control effect of the manipulator is more stable.
Experimental results show that this method has high accuracy and robustness, and can provide reference for subsequent on orbit

sampling tasks.

Keywords: Lunar surface sampling; manipulator; path planning; deep reinforcement learning.

Highlights:

® A path planning method of lunar surface sampling manipulator based on deep reinforcement learning is proposed.
e The control problem of slender and flexible manipulator is solved.

e The deep reinforcement learning control method has high accuracy and robustness.

e The method improves the efficiency of on orbit mission implementation
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