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“嫦娥五号”月面采样机械臂路径规划

胡晓东，张    宽，谢    圆，张    辉，卢    皓，刘传凯，陈    翔，赵焕洲，谢剑锋

（北京航天飞行控制中心， 北京 100094）

摘    要： 针对“嫦娥五号”月面采样任务中采样机械臂的精准控制问题，提出了一种基于深度强化学习的路径规划方

法。通过设计深度强化学习算法的多约束奖赏函数，规划了满足安全性、快速性、可达性3个约束的运动路径，实现了采样

机械臂的精准控制。在满足任务安全性的提前下，缩短了天地之间的交互时间，机械臂控制效果平稳。在轨实验结果表

明，该方法具有较高的准确性和鲁棒性，可为后续的深空探测在轨遥操作采样任务提供借鉴。
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引　言

2021年12月1日23时11分，“嫦娥五号”着陆器和上

升器组合体安全着陆于月面正面风暴洋东北部西经

51.8°、北纬43.1°位置，月面初始化后约19 h完成了月

面采样封装任务，通过钻取和表层采样两种方式共获

取1 731 g月球样品[1]。

空间运动机械臂采取“大范围+精调”运动相结合的

控制方式。大范围运动过程需综合考虑安全性、可达

性、平稳性，从而实现空间机械臂的远距离移动；精

调运动过程需要地面上注规划运动策略，机械臂微调

到达精确的目标位置。目前，精调控制采用“视觉定

位+专家决策”的方式实现，视觉定位计算出机械臂的

当前位置以及与目标位置的偏差，专家结合以往控制

经验对机械臂的运动路径进行现场决策，该方式主要

面临的难题：①受细长机械臂柔性形变和关节间隙误

差影响，机械臂会产生较大的控制偏差，为满足月面

采样控制过程的毫米级精度要求[2-3]，需多次精调到达

目标位置；②天地协同工作频繁、过程复杂，机械臂

大范围运动到位后，地面首先进行视觉定位，专家基

于定位结果给出精调方向和移动距离，难以适应未来

“大时延”的深空采样任务；③因不确定的精调量，采

样任务需提前准备机械臂运动参考坐标系下各轴向不

同步长的运动指令，任务中计算出调整控制量后采用精

调指令组合方式实施控制，但运动路径并不是最优

的路径。

人工智能研究的对象侧重于相对复杂的控制环

境，以及控制模型不确定性等情况[4-6]。强化学习作为

人工智能中机器学习的重要组成部分，机器人通过传

感器完成与环境之间的交互，以最大化奖励作为优化

目标，通过策略函数获取最优策略，既可以解决合作

目标的路径规划问题，又可以实现非合作目标的路径

规划。

“嫦娥五号”月表取样采样过程中，有触月、采

样、放样、抓罐和放罐5个步骤，使用四自由度细长柔

性机械臂采集月面土壤样本并将其转移至初级密封罐

中。机械臂的大范围运动至精调初始位置点后，采用

精调方式控制机械臂到达目标位置。因细长机械臂的

柔性形变特性和机械臂关节间存在间隙误差，使得机

械臂末端实际抵达位置与预期位置存在一定的偏差[2]。

判断机械臂末端采样器到达预定采样位置，是实现机

械臂精准控制并保证能够采到样品的关键。

针对机械臂的细长、柔性特点使得难以通过开环

控制实现精确采样的问题，本文提出了一种基于深度

强化学习的月面采样机械臂路径规划方法，针对采样
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机械臂任务环节多、约束条件复杂、工作环境恶劣等

难题，构建了基于深度强化学习— —深度Q网络

（Deep Q Network，DQN）的路径规划方法，最后结

合仿真实验和“嫦娥五号”月面在轨放样精调过程对方

法的有效性进行了验证说明。 

1    深度强化学习方法
 

1.1    强化学习

强化学习（Reinforcement Learning，RL）作为一

种重要的机器学习方法，原理如图1所示[7]。基于马尔

科夫决策过程，强化学习不需要对环境提前建模，通

过试错机制求解最优策略，适应于求解未知环境下的

机械臂路径规划问题。Maeda等[8]将人工神经网络与强

化学习结合，在特定任务中实现了机器人的路径规

划。Park等[9]将强化学习与传统随机路图（Probabilistic
Road Maps，PRM）算法结合，提升了PRM算法处理

动态环境的能力，实现了机械臂的实时高效路径规

划。Lange等[10]利用卷积神经网络的非线性拟合能力，

使其与强化学习算法结合，成功实现了移动机器人的

路径规划。

 
智能体

环境

奖励状态 动作

 
图 1    强化学习的原理

Fig. 1    Principles of reinforcement learning

  
1.2    深度学习

深度学习（Deep Learning，DL）[11]采用深度神经

网络（Deep Neural Network，DNN）[12]作为算法的网

络架构，适应于解决机械臂路径规划中的图像处理问

题。深度学习模拟人脑的思考和训练方式，将大量的

数据特征储存在DNN参数中，通过训练不断改变网络

权值参数，其中，应用最广泛的框架是卷积神经网络

（Convolutional Neural Network，CNN）[13]。卷积神经

网络解决了传统方法网络参数多、训练难度大的问

题。典型的卷积神经网络的结构包括相互交替的特征

提取层与特征映射层、若干全连接层和分类器等，

图2是一个典型的4层卷积神经网络。

 
图 2    卷积神经网络结构

Fig. 2    Structure of convolutional neural network
  

1.3    深度强化学习

深度强化学习算法综合了深度学习的非线性拟合

能力和强化学习的自学习特性，综合考虑多因素约束

条件，适应于多维度输入的机械臂路径规划问题，提

高了控制机械臂的智能性。2013年，谷歌在NIPS会议

上发表了DQN算法[14]，揭开了深度强化学习的序幕，

DQN利用4幅图像作为网络的输入，采用从图像中直

接学习的策略来优化智能体的策略，图3为DQN算法

的原理。

 
经验回放

st

预处理

目标Q网络

C 步
之后

损失

函数

ε贪婪

ϕ（st）

ϕ（st），at，rt，ϕ（st+1） ϕ（sj），aj，rj，ϕ（sj+1）

Q（ϕj，a，θ） rj + γmaxa′Q（ϕj+1，a′；θ−）^

 
图 3    DQN算法的原理

Fig. 3    Principle of deep Q network algorithm
 

2015年，DeepMind发表了改进的DQN算法[15]，提

出了经验回放（Experience Replay）和目标Q网络

（Target Q Network）两大改进技术。Lei等[16]采用改进

的DQN算法，实现了移动机器人在未知环境下的路径

规划。Zhang等[17]利用DQN算法的自学习能力，解决了

机械臂捕获目标的路径规划问题，并将该算法应用到

真实场景下三关节机械臂的运动规划。为进一步提高

DQN算法的准确率，Hasselt等 [ 1 8 ]提出了Double Q-
Network，通过2个Q网络的交替工作来降低犯错的概

率。Schaul等[19]提出了Prioritized Replay机制，基于优

先级的回放机制变相增加了训练的样本，减少了样本

之间的干扰。Wang等[20]提出了Dueling Network，在网

络内部将Q值分解为两部分：一部分是与动作无关的

标量；另一部分是与动作有关的Advantage值。上述算

法解决了离散空间的控制问题，但很难适应于连续高
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维的控制难题。 

2    深度强化学习的机械臂路径规划方法
 

2.1    月面采样机械臂模型

为解决采样任务环节多、约束条件多、工作环境

恶劣等难题[21]，“嫦娥五号”采样机械臂采用“肩2+肘
1+腕1”的4自由度构型设计方案[2]，机械臂连杆坐标系

在展开状态下的定义如图4所示，D-H参数如表1所示。

 

x0

z0

θ1

θ2

θ3

θ4

d1d2

d3

d4

a2

a3

 
图 4    机械臂连杆坐标系定义

Fig. 4    Definition of manipulator in linkage coordinate system
 
 
 

表 1    机械臂D-H参数

Table 1    The D-H parameters of the manipulator

i θ/（°） αi-1/（°） a i-1/mm d/mm

1 θ1 90 0 101.0

2 θ2 0 0   85.5

3 θ3 0 1 970   96.0

4 θ4 0 1 770   93.0
 
 

月面采样机械臂正向运动学描述的是机械臂关节

空间到末端笛卡尔空间的映射关系，基于代数法的连

杆齐次变换矩阵为

i+1
i T=


cθi −sinθi 0 ai−1

sinθicosαi−1 cosθicαi−1 −sinαi−1 −sinαi−1di

sinθisinαi−1 cosθisαi−1 −cosαi−1 cosαi−1di

0 0 0 1


(1)

将表1中各行D-H参数代入齐次变换矩阵可得：

1
0T =


cosθ1 −sinθ1 0 0

0 0 −1 −d1

sinθ1 cosθ1 0 0
0 0 0 1

 (2)

2
1T =


cosθ2 −sinθ2 0 0
sinθ2 cosθ2 0 0

0 0 −1 d2

0 0 0 1

 (3)

3
2T =


cosθ3 −sinθ3 0 a2

sinθ3 cosθ3 0 0
0 0 −1 d3

0 0 0 1

 (4)

4
3T =


cosθ4 −sinθ4 0 a3

sinθ4 cosθ4 0 0
0 0 −1 d4

0 0 0 1

 (5)

 

2.2    多约束奖励函数

奖励函数作为深度强化学习算法的评价准则，决

定了采样机械臂运动策略函数的更新方向，本文选取

安全性、快速性、可达性作为奖励函数的约束条件，

设计多约束奖励函数。以奖励函数为评价准则，空间

机械臂通过与环境的交互调整网络的权值，使目标函

数达到最优。多约束奖励函数流程如图5所示。

 
初始化状态

机械臂运动策略选取

碰撞检测

抵近奖励

到达目标点判断

回合结束判断

输出结果

N

Y

N

 
图 5    多约束奖励函数流程

Fig. 5    Process of multi constraint reward function
 

输入：当前状态St，终点坐标Cg，安全性计算方

法f1（θ）、时效性计算方法f2（θ）、可达性计算方法

f3（θ）；

输出：当前状态对应的奖励R t，回合结束符

Done（Done = True表示回合结束，Done = False表示

回合尚未结束）；

Step1（初始化状态）：根据当前状态St读取采样

机械臂各关节角度和末端位姿；

Step2（机械臂运动策略选取）：机械臂从策略库

中随机选取运动方向和移动距离，机械臂由当前位置

pt移动至下一位置pt+1；

Step3（碰撞检测）：计算采样机械臂各连杆及末

端与障碍物的距离，根据f1（θ）的计算结果，若发生

碰撞，给予反向奖励−100，即Rt = Rt −100；
Step4 （抵近奖励）：根据f2（θ）的计算结果，
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若机械臂最新位置pt+1比上一位置pt更接近目标点，则

更新奖励Rt  = Rt + 0.1×|| pt+1 − pt ||；
Step5（到达目标点判断）：若机械臂到达目标

点，则更新到达目标点的判断符，即On_goal = On_
goal+1；

Step6（回合结束判断）：为了消除到达目标点的

抖动问题，当采样机械臂到达目标点并持续一定时

间，即On_goal > 50时，判定为回合结束，令Done =
True，并给予正向奖励+ 100，即Rt = Rt + 100；

Step7（输出结果）：输出当前状态对应的奖励

Rt和回合结束符Done。 

2.3    基于DQN的机械臂路径规划方法

本文基于建立的采样机械臂的运动学模型，将

DQN应用于机械臂路径规划，采用奖励函数确定机械

臂的策略更新方向，通过训练过程更新网络参数权

重，机械臂路径规划算法如图6所示。

 

N

Y

Y

N

初始化

选择动作

计算奖励

更新状态

回合结束判断

步数结束判断

更新缓存区

随机选择策略

更新Q网络

网络权值更新

更
新
步
数

输出结果更
新
回
合
数

 
图 6    基于DQN的机械臂路径规划算法

Fig. 6    Path planning algorithm of manipulator based on DQN
 

Step1（初始化）：随机初始化深度神经网络Q的

参数权重ω，给超参数α、λ赋值，清空缓存区M；

Step2（回合结束判断）：判断当前回合标志符是

否为最大回合数？若是，则结束训练；若否，则继续

Step3～Step10；
Step3（步数结束判断）：判断当前步数标志符是

否为最大步数？若是，则结束当前回合；若否，则继

续执行4～10；
Step4（选择动作）：根据状态选择并执行相应的

动作，为了探索潜在的更优策略，选择动作时遵循的

策略为贪婪算法[22]；

Step5（计算奖励）：调用多约束算法函数获得相

应的奖励Rt；

Step6（更新状态）：更新状态St到St+1；

Step7（更新缓存区）：将前期经验放入缓存区M；

Step8（随机选择策略）：从缓存区M中随机选择

n组策略；

Step9 （更新Q网络）：根据所选策略更新Q网

络，Q（St，At）= Q（St，At）+ α（λmaxaQ（St+1，

a）−Q（St，At）+ Rt+1）；

Step10（网络权值更新）：根据Q网络训练的损失

函数反向传播更新网络权重。 

3    实验验证与分析
 

3.1    月面数字仿真实验与分析

为了验证深度强化学习方法的有效性，本文在

MATLAB平台下开展了仿真实验。硬件平台的处理器

型号是Intel I9-9880H，主频为2.3 GHz，显卡为GTX
1 060（GPU）。

DQN训练过程的回合数为5万个，每个回合的最

大训练步数为500步，每个回合训练的终止条件为机械

臂到达目标点或达到最大步数。训练过程中每个回合

的步数变化曲线如图7所示。对图7结果进行分析可

知：①经过深度强化学习训练，机械臂成功到达目标

点，移动路径无碰撞；②随着训练次数的增加，机械

臂单回合所需步数逐渐减小，表明机器人向最优路径

靠拢；③由于机械臂初始位置具有随机性，最终收敛

曲线存在一定的波动。
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图 7    单回合所需步数

Fig. 7    Steps required for a single episode
 

为更好展示单回合的收敛情况，本文绘制了训练

过程中单回合奖励的变化曲线，选取了第5 000/10 000/
30 000/50 000回合作为代表，展示了训练过程的收敛情
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况，仿真结果如图8所示。在训练的起始阶段（如第

5 000回合），机器人处于初始探索阶段，奖励处于很

低的水平；随着训练回合的增加（如第1万回合），奖

励开始增大，但波动很大；当训练回合足够大时（如

第3万回合和第5万回合），单回合奖励曲线已经收

敛，表明机器人找到了最优路径。
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图 8    单回合奖励曲线

Fig. 8    Single-round reward curve
 
 

3.2    月面采样精调实验与分析

2020年12月2日，“嫦娥五号”表取采样过程共进行

了12次放样，该采取过程采用“视觉定位+专家决策”的

方式，视觉定位阶段对下传的近摄像机图像进行椭圆

轮廓特征提取，特征自动提取完毕后，采用视觉定位

方法计算出机械臂的位姿以及与放样目标点的距离，

椭圆轮廓特征提取的图像如图9所示。
 

 
图 9    放样过程椭圆特征提取图像

Fig. 9    Ellipse feature extraction image in lofting process
 

专家决策阶段由地面专家根据地面验证试验的经

验，选取合理可行的精调方向和精调距离，地面通过

上注事先生成的单方向运动指令实现机械臂的精准控

制，如果单次控制结果不满足放样2 mm的误差精度要

求，则重复视觉定位和专家决策过程，“嫦娥五号”任

务第一次放样精调过程的移动路径如图10所示。
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图 10    第一次放样精调过程

Fig. 10    Fine adjustment of the first lofting process
 

第一次放样精调过程先X、Y方向运动、后Z方向

运动的方式实施，精调的过程共耗时20 min，其中机

械臂的运动时长3 min，3次视觉定位时长5 min，专家

决策及天地交互共耗时12 min。
本文采用“嫦娥五号”任务第一次放样精调的实际

数据对训练后的模型进行了验证，实际在轨路径与本

算法规划路径下的关节角度变化情况如图11所示。
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图 11    机械臂关节变化情况

Fig. 11    Chang’E-5 of joint angle of manipulator
 

仿真实验结果表明，在安全性方面，在轨路径与

规划路径都没有与“嫦娥五号”探测器本体发生干涉，

满足任务实施的安全性要求；在运动时间方面，基于

深度强化学习的方法共耗时5 min，其中机械臂运动时

长2 min，地面复核最终位置时长3 min，相比实际在轨

耗时20 min缩短了15 min，极大地缩短了天地之间的交

互时间；在机械臂控制效果方面，于在轨实际路径相

比，规划路径的关节角度变化更平滑，控制效果更加

平稳。 

4    结　论

为解决月面无人采样任务中机械臂精准控制难度

大、采样时间受限、天地协同复杂的难题，本文提出

了基于深度强化学习的机械臂路径规划方法，机械臂

根据任务实施过程中的安全性、快速性、可达性准

则，自主规划移动路径，并判断控制目标是否满足任

务指标要求。通过将该算法规划路径与实际在轨数据

路径做比较，结果表明本算法在满足任务安全性的前

提下，机械臂控制效果更加平稳，解决了柔性细长采

样机械臂难以精准建模导致控制存在系统偏差的难

题，实现了采样过程机械臂的精准控制，可以为后续

月球及行星探测机械臂远程遥操作采样任务提供借鉴。
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Path Planning of Lunar Surface Sampling Manipulator for Chang'E-5 Mission

HU Xiaodong，ZHANG Kuan，XIE Yuan，ZHANG Hui，LU Hao，LIU Chuankai，CHEN Xiang，
ZHAO Huanzhou，XIE Jianfeng

（Beijing Aerospace Control Center， Beijing 100094，China）

Abstract：Aiming at the problem of precise control of the sampling manipulator in the lunar surface sampling mission of

"Chang'E-5"，a path planning method based on deep reinforcement learning is proposed. By designing the multi-constraint reward

function of the deep reinforcement learning algorithm，a motion path that satisfies the three constraints of safety，speed and

reachability is planned. The precise control of the sampling robotic arm is realized. Under the advance of meeting the task safety，

the interaction time between heaven and earth is greatly shortened，and the control effect of the manipulator is more stable.

Experimental results show that this method has high accuracy and robustness，and can provide reference for subsequent on orbit

sampling tasks.

Keywords：Lunar surface sampling；manipulator；path planning；deep reinforcement learning.

Highlights：
●　A path planning method of lunar surface sampling manipulator based on deep reinforcement learning is proposed.
●　The control problem of slender and flexible manipulator is solved.
●　The deep reinforcement learning control method has high accuracy and robustness.
●　The method improves the efficiency of on orbit mission implementation
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