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Propellant Flow Characteristics in Tank and Related Impact Analysis
During the Vertical Landing Stage

GA Yongjing, WANG Haosu, ZHANG Qingsong, XU Shanshu, WU Yitian

(Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China)

Abstract: Reusable technology is one of the key factors to realize the launch vehicle reusability. It is a hot spot in current
research to achieve the sub-stage reusability by vertical landing. During the process of launch vehicle taking-off and vertical landing,
the propulsion system is not only required to provide thrust in the ascent, but also to realize the smooth deceleration and control of
vertical landing. It is required that the rocket engine shall be improved to possess multiple-start and in-depth thrust regulating
capability and also have higher requirements to propellant management. During the vertical landing process, the propellant flow
characteristics in tank are greatly affected by the acceleration of the vehicle. If there are some lateral disturbance, the propellant in the
tank will move violently due to severe acceleration decrease and may affect the normal operation of the rocket engine. In this paper,
the propellant flow behavior during the vertical landing process is investigated with Flow 3D numerical simulation, and the influence
of the lateral and axial acceleration on the propellant flow behavior during the engine shutdown process is analyzed. The results show
that the sloshing amplitude of the propellant is related to the amplitude of the lateral disturbance when the axial acceleration changes
to a certain extent, and the sloshing amplitude of the propellant will be greatly enlarged when axial forces suddenly decrease. It is
suggested that in the process of vertical taking-off and landing, the attitude of vehicle should be guaranteed as much as possible to
avoid large lateral disturbance.

Keywords: vertical landing; propellant flow behavior; demonstration test

Highlights:

e The propellant flow behavior during the vertical landing process is investigated with Flow 3D numerical simulation.

e The influence of the lateral and axial acceleration on the propellant flow behavior during the engine shutdown process is analyzed.

e The results show that the sloshing amplitude of the propellant is related to the amplitude of the lateral disturbance and the sloshing

amplitude of the propellant will be greatly enlarged when axial forces suddenly decrease.

e It is suggested that during the process of vertical taking-off and landing, the attitude of vehicle should be guaranteed as much as

possible to avoid large lateral disturbance.
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