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摘    要： 基于甚长基线干涉测量技术（Very Long Base Interferometer，VLBI）的时延、时延率以及USB（United S-
band）/UXB（United X-band）的测距特点，采用联合统计定位及月面高程约束策略，实现了高精度的探测器的实时单点定

位和准实时联合统计定位，且实时单点定位不受力学约束能够快速准确地给出三维位置信息，最终实现在轨控弧段和探测

器被月球捕获阶段的轨道根数的实时监测。在“嫦娥3号”月面着陆器定位中，获得月面位置好于100 m的外符合精度。在特

殊的轨道阶段，采用△DOR差分技术，VLBI探测器近月捕获制动及“嫦娥4号”中继星变轨进入地月L2平动点的Halo轨道等

特殊阶段，实时快速地给出6个瞬时轨道根数，为工程提供重要参考。
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引　言

深空目标的轨道计算和定位归算既有相通之处，

也存在显著区别。主要区别在于，定轨计算一般要求

有足够长的跟踪弧段，通过状态转移矩阵将整个弧段

中不同时刻的观测资料联系起来统一求解，强调精确

模制整个跟踪弧段中飞行器的动力学状态。而在定位

归算中，待求参数是各给定时刻目标的位置，对跟踪

弧段的长度没有苛刻要求，不需要模制飞行器的受力

状况，仅依据测站与目标的几何关系实现轨迹确定。

在轨道机动、软着陆以及月面行进等过程中，由于目

标的受力状态不易精确模制，一般可采用定位归算，

以快速确定目标飞行或行进轨迹。

我国探月工程和火星探测工程中，采用USB（United
S-band）/UXB（United X-band）测距测速技术与

VLBI两种手段进行联合测定轨工作[1-2]。VLBI测轨分系

统由上海处理中心和位于上海、北京、昆明和乌鲁木

齐的VLBI台站组成[3]。VLBI测轨分系统根据VLBI各台

站的观测数据，实时给出该网的时延和时延率观测

量，并将综合利用VLBI测量结果、测距测速数据对探

测器各飞行段的定轨定位和轨道预报等发往北京中

心。定位归算是VLBI测轨分系统的软件配置项之一[4]，

可快速实时给出探测器的位置信息。

在“嫦娥1号”任务期间，定位归算在月球捕获、受

控撞月等关键弧段已经获得了成功应用。在“嫦娥2号”

探测器的中途轨道修正、月球捕获和数次绕月轨道机

动中，定位归算也成功应用于探测器轨迹的实时监

测。“嫦娥4号”（CE-4）首次成功实现了月球背面软着

陆和探测任务[2-12]。CE-4包括中继星和着巡组合体（以

下简称着巡体），其中着巡体在月球背面着陆并开始

探测，中继星在地月L2点的Halo轨道上运行，开展地

月之间的信息传输。

本文将介绍实时模式下，VLBI在S、X波段单点定

位的精度情况分析、在轨道机制和探测器被月球捕获

阶段的轨道根数实时监测，在关键任务阶段，如轨道

制动和探测器被捕获阶段定位归算实时确定探测器的

轨道信息、准实时模式下，采用统计联合定位方法以

及月面高程约束方法，进一步压制和降低噪声影响，

提高月面的着陆器和巡视器位置信息精度，及时快速

确定探测器的这些位置信息。

1    VLBI实时定位归算精度

定位归算即假设测站的坐标与运动以及地球定向
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参数（Earth Orbit Plane，EOP）均准确已知，设法从

探测器信号同一波前观测量（VLBI时延、时延率、

USB测距测速）中解析出信号发出时刻的探测器状态

矢量（三维坐标与速度）。时延和测距仅是探测器坐

标的函数，时延率和测速则同时取决于探测器的坐标

与速度。为提高参数解的收敛速度，探测器坐标与速

度的初值一般取自预报轨道，且越准确越好。若仅解

算探测器坐标相对于初值的改正，一般只利用时延、

测距观测量。延迟率和测速观测量对探测器坐标的约

束作用相对较低，且速度初值的偏差会影响坐标改正

的解算精度。

定位中采用的观测数据是实时的VLBI时延和测距

两类数据，两者满足的观测方程为

T1−T0 =
R01

c
+RLT01 (1)

式（1）是在太阳系质心坐标系（Barycentric Celestial
Reference System，BCRS）下，信号从探测器到台站1
的光行时[13]，等式右边第1项是探测器和台站1在响应

时刻的距离与光速的比值，第2项是该项的相对论修

正，通过对光行时的迭代计算可以得到探测器到达台

站1和台站2的精确光行时，在BCRS下的时延即为两者

的差，对于单程测距而言，测距值即为探测器到达台

站1的精确光行时。时延观测量需要将TDB转换到TT
时间系统，转换满足的方程为
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建立了观测方程得到时延和测距的理论值，通过

内插得到对应于同一星上时刻的观测量后得到o-c的
值，通过偏导数的解算[5]，构建最小二乘方程，解算探

测器的实时位置。定位归算中，不一定正好存在与给

定时刻波前相对应的观测量，需依据探测器坐标采用

值迭代计算所需观测量的观测时刻，进而由观测序列

内插出所观测量。这与坐标初值改正的解算是一个循

环和逐步逼近的过程。

2    月球探测实时单点定位精度

在月球探测中，VLBI主要是在S波段或者X波段上

开展观测，其中CE-1、CE-2、CE-4中继星均在S波
段，CE-3、CE-4着陆器在X波段上，“嫦娥5号”再入返

回飞行试验器（CE-5T1）是在S/X双频波段上开展

VLBI观测。相比于S波段，X波段上射电干扰少，电离

层的误差也相对较小，测量精度相对较高。

CE-4中继星尽管也是主要在S波段观测，但是与

CE-3一样，利用的是ΔDOR差分VLBI技术。在实时模

式下，对探测器和其附近位置精确已知的射电源交替

观测，修正相关系统误差，从而获得高精度观测量。

CE-4中继星的VLBI时延测量数据定轨后残差相较CE-3
的X频段数据精度略有下降，但是精度高于CE-2和CE-
5T1任务[12]。

由于VLBI观测的波段不同及ΔDOR技术的采用

等，定位归算得到的探测器位置精度也相应有所变

化。本文将以CE-4任务的观测为例给出定位归算的精

度情况。实时任务期间，定位归算除了实时测定探测

器的位置外，还实时监视时延和测距数据情况，通过

实时的拟前和拟后残差结果，实时判断轨道状态，及

时准确地确定轨道情况。

图1和图2是CE-4探测器实时任务s8512a（代码表

示S波段2018年5月12日第一次实验）实验期间测量数

据拟合前后的情况，实时定位结果前观测量O与基于

预报星历推算的时延（图1）和测距（图2）的拟前残

差（红色所示），观测量O与定位结果后得到的探测

器位置推算的时延（图1）和测距（图2）的拟后残差

（绿色所示）。图3所示为在s8512a实验中，实时定位

与预报轨道在赤经赤纬方向上的差异。

由图1～3可以明显看出，此次实验中进行了轨道

制动，并且快速判断出制动的开始和结束时刻。以

CE-4中继星任务为例（图4）显示实时定位的精度，蓝

色为赤经精度统计，紫色为赤纬精度统计。可见，该

精度远好于项目指标的要求精度（赤经0.05～0.37 as，
赤纬0.07～0.40 as）。

3    轨控弧段定位归算

3.1    月球捕获阶段的轨道监测分析

在探月工程中，探测器在到达目标轨道之前，中

途会进行多次轨道修正，比如在探测器抵达月球轨道

附近，被月球捕获阶段，需要进行轨道机动。在非轨

道机动阶段，轨道根数通常都是相对稳定的，通过对

一段时间内所有测量数据的动力学轨道拟合和参数化

的定轨计算，获得高精度的轨道参数。在轨道机动阶

段，探测器受力情况复杂，除了常规摄动力外，轨道

制动量随时可能发生变化，在此阶段的轨道根数实时

发生变化，无法通过常规定轨方法给出。

定位归算是基于探测器与地面测站网的相对几何

关系，不受探测器具体的受力情况影响，基于实时的

VLBI时延、时延率以及测距测速观测量，实时解算探

测器的位置和速度参数，进而实时获取6个瞬时轨道根
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数。因此在轨道制动阶段包括变轨过程、探测器被月

球捕获阶段，以及在CE-4中继星变轨进入halo轨道阶

段，实时定位方法快速地给出轨道信息，为工程提供

参考，包括判断轨道机动效果和制定进一步轨道机动
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图 1    CE-4中继星s8c12a实验中时延拟合前后残差

Fig. 1    The pre-fit and post-fit of delay residuals in s8c12a experiment of CE-4 relay satellite project
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图 2    CE-4中继星s8c12a实验中测距拟合前后残差

Fig. 2    The pre-fit and post-fit of range residuals in s8c12a experiment of
CE-4 relay satellite project
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图 3    CE-4的s8c12a实验中实时定位结果与预报轨道的差异

Fig. 3    The differences between the positioning results in real-time and the
orbit prediction in experiment s8c12a of CE-4 project
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计划，以及判断探测器是否已被捕获或到达预订轨

道等。

r v a

e µ

相比于实时单点定位，实时轨道监测还需要同时

解算探测器的速度，因此，除了读取时延和测距数据

外，还要借助于时延率和Doppler观测数据对速度进行

解算，观测方程基于式（1）和式（2）建立起其时间

差分量。同理，解算时延率和Doppler对位置速度的偏

导数，构建最小二乘方程，同时解算探测器的位置和

速度6维坐标，然后将其转换成轨道根数，式（3）和

式（4）是由探测器的位置 和速度 得到半长径 和偏

心率 的方程，其中 是引力常数。

a =
1

2
r
− v2

µ

(3)

e =

√(
1− r

a

)2

+

(
rv
√

aµ

)2

(4)

随着探测器与地月距离的变化，中心引力天体也

发生变化，当距离月心小于66 200 km时，将进入月球

引力范围，中心天体由地球转为月球。轨道也相应变

成以月心为焦点的双曲线轨道。在2019年5月25日CE-4
中继星进行了近月制动，表1给出中继星在近月制动时

轨道偏心率的变化。由表1可以看出，在轨道制动的

17 min内，轨道偏心率从1.303逐渐减小到0.966并稳定

下来，由偏心率大于1的双曲线轨道转变为偏心率小于

1的椭圆轨道，说明中继星成功被月球捕获。这是判

断轨道机动效果的重要依据，也是工程成败的关键性

标识。
 

表 1    CE-4中继星近月捕获期间的偏心率变化

Table 1    Eccentricity changes of CE-4 relay satellite during
the baking at perilune

时间（h:m:s） 偏心率  时间（h:m:s） 偏心率

13:32:05 1.303

 

13:41:05 1.087

13:33:05 1.288 13:42:05 1.066

13:34:05 1.310 13:43:05 1.046

13:35:05 1.224 13:44:05 1.025

13:36:05 1.201 13:45:05 1.037

13:37:05 1.176 13:46:05 0.996

13:38:05 1.151 13:47:05 0.971

13:39:05 1.130 13:48:05 0.966

13:40:05 1.108 13:49:05 0.966
 
 

3.2    中继星进入Halo轨道的实时监测分析

CE-4任务中着巡体成功实现了人类历史上首次月

球背面软着陆，并开展了一系列月球背面的就位探测

与巡视探测。运行在地月拉格朗日L2动力学平动点附

近的CE-4中继星探测器，为月球背面的着巡体探测器

与地球之间提供了通讯联系，降低了轨道转移的燃料

消耗，也延长了其轨运行寿命。CE-4中继星在绕L2平
动点的Halo轨道上运行，Halo轨道不是通常探测器的

椭圆轨道，而是三维的非规则曲线，轨道控制比较复

杂[7-9]。CE-4中继星在Halo轨道做周期运动，通过定期

轨控保持轨道的稳定性。在CE-4中继星进入Halo轨道

前后，将实时定位归算的结果转化为瞬时轨道根数，

通过轨道根数的变化判断是否成功变轨，用变轨后的

定轨结果与定位归算结果比较判断是否正确进入

Halo轨道。
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图 4    CE-4中继星任务中定位精度的统计

Fig. 4    The position precision statistics in CE-4 relay satellite project
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2019年6月14日3时，中继星进行了第二次捕获机

动，之后将变轨进入Halo轨道[10]。图5为变轨前后轨道

根数的情况。从轨道制动开始的7 min内，中继星轨道

根数出现明显变化，之后轨道根数基本保持不变，通

过事后与项目指标比对，表明此次中继星在预定时间

顺利完成变轨任务。
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Fig. 5    Orbital elements change during the CE-4 relay satellite
entering the Halo orbit

 

4    月面着陆器与巡视器的准实时定位

在测定轨任务期间，定位归算实时性强，从得到

观测数据至给出定位结果，定位配置项的总时间响应

要求小于7.5 s，并快速给出探测器的三维位置结果；

在轨道制动阶段，也实时给出高精度的瞬时轨道根

数，以便监测轨道的实时状态，为工程提供重要参

考。在CE-3及后续发射的CE-5任务中，将对月面目标

如CE-3着陆器和巡视器以及CE-5着陆器进行定位，对

这类探测器的定位模式与实时定位有所不同，月面目

标的定位属于准实时的响应。因为着陆器在月面固定

不动，巡视器在一段时间内也在月面上保持静止，通

过积累这段时间的测量数据，采用统计联合定位模

式，增加了有效观测数据的长度，压缩噪声影响，进

而提高定位精度[12]。

4.1    月面着陆器定位

相比于在奔月和环月段的实时单点定位，在月面

着陆器的定位中，观测方程的偏导数增加了天球坐标

系到月固坐标系的转换矩阵，由两个坐标系转换的欧

拉角旋转矩阵予以实现[10]。CE-3着陆器于2013年12月
14日成功软着陆于月球的虹湾区域，在CE-3着陆后的

1 h内，基于测轨系统提供的VLBI时延和UXB三向测

距数据，进行着陆器统计联合定位计算。

月固坐标系有主轴和平轴坐标系两类，美国喷气

推进实验室（Jet Propulsion Laboratory，JPL）的DE历
表（采用DE421历表）能够提供转换到主轴坐标系的

欧拉角[11-12]，为比较结果方便，项目要求统一采用平轴

坐标系，因此，CE-3着陆器定位结果统一在平轴坐标

系中描述。

基于美国的月球探测器（Lunar Reconnaissance
Orbiter，LRO）的激光测高数据编制的2 050阶月球地

形球谐函数模型，整体精度优于10 m[11]，而CE-3着陆

器的位置在月球的虹湾区域，这里地势平坦，该模型

的精度更高，并且，该模型也是在平轴坐标系中描述

的[12-14]。因此为了提高着陆器的定位精度，利用了高程

约束，测量模型为√
x2+ y2+ z2 = r0+ r(λ,φ)+ ϵ (5)

r0

r(λ,φ)

ϵ

其中：x，y，z是月固系下着陆器的坐标； 是月球半

径； 是以经纬度为函数的着陆器高程，通过读取

LRO的模型获取； 是噪声。

基于式（5），得到CE-3在平轴月固坐标系下的着

陆器的位置为经度–19.507 78°，纬度44.122 36°，高程

–2 634 m，该位置与NASA采用的LRO探测器成像得到

的三维位置差异小于100 m，与其它方法得到的三维位

置差异也在100 m以内[12]。这对于38 400 km以远目标，

仅相当于0.05 as的角误差。

CE-5探测器于2020年11月发射，完成我国首次月

球月壤采样返回任务。CE-5的着陆器与上升器的组合

体在月球北风暴洋的Rümker区着陆，采集了月面及地

下的月壤后，上升器与着陆器分离，在月面点火上升

器起飞，后与返回器对接，共同返回地球。因此，CE-5
着陆器的定位精度尤为重要，也进行了CE-5着陆器的

定位仿真与精度分析。

仿真产生CE-5着陆器的理论位置（按照CE-3着陆

器的坐标形式给出）。仿真数据包括4个VLBI站的时

延数据和3个台站的测距数据，仿真的噪声为时延1 ns，
测距为0.5 m，结合项目的情况，仅采用0.5 h的观测数

据定位，得到的仿真定位结果三维总的差异为31.6 m。

满足项目精度要求。

4.2    月面巡视器定位

CE-3在巡视器和着陆器成功分离后，巡视器绕着

陆器行走并在多点停留，与着陆器互拍，巡视器停留
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时，VLBI测轨分系统对巡视器和着陆器进行了同波束

的测量，测量包括巡视器相对于着陆器的同波束差分

群时延和差分相时延观测数据，其中差分相时延消除

了共同的大气、电离层和仪器差等误差，大大提高了

观测量的精度，但是存在整周模糊度，在定位中同时

解算巡视器相对于着陆器的位置及模糊度参数。

定位中采用的是着陆器北东地坐标系下的北、东

向的相对位置

d(c∆τt) =[
∂c∆τt

∂(X,Y,Z)
· ∂(X,Y,Z)
∂(x,y,z)

· ∂(x,y,z)
∂(N,E)

] ∣∣∣∣∣∣t0·

d(N,E)+1dε0 (6)

ε0其中，全局量 为某基线的时延系统差（整周模

糊度反映在观测量里），右侧第1项为差分时延对惯性

系下巡视器位置的偏导数；第2项时惯性坐标系下的巡

视器位置相对于月固系下位置的偏导数；第3项是月固

系下三维位置对北东地坐标的偏导数，这里没有求解

高程，因为虹湾区域地势平缓，并且两者相距仅几十m，

将巡视器的高程约束到着陆器上。

通过采用统计联合方法，在高程约束下，定位归

算得到了巡视器相对于着陆器的位置，采用同波束差

分相时延可以获得1 m外部符合（相比于照相技术和成

图技术）的相对定位精度 [12]。该方法简洁、精度高，

可以和照相相互比较验证。

5    结　论

本文主要介绍了我国探月工程嫦娥系列探测器项

目中的定位应用。实时定位准确快速确定探测器的三

维位置信息，在特殊的轨道制动阶段，如变轨、近月

制动、捕获机动等，通过实时分析VLBI时延、时延率

及测距和Doppler数据解析探测器的6维状态参数，并

转换为瞬时轨道根数，快速准确地判断瞬时轨道，为

工程提供重要参考。

准实时模式下针对月面的着陆器和巡视器定位，

能够获得全部数据时，快速响应，采用联合统计定位

方法以及高程约束，进一步压制噪声影响，获得了着

陆器好于100 m的外部符合精度。基于高精度的VLBI
同波束差分相时延观测量，实现了对巡视器外部符合

1 m的高精度相对定位。

我国已发射的CE-5探测器，实现了月面软着陆及

返回两大工程目标，并且也实现了上升器与返回器的

交汇对接。在两个探测器的交汇对接期间，定位归算

也将实时快速直观确定两个探测器的差分位置，将继

续发展定位归算方法。
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The High Precise Positioning Reduction Based on VLBI

GUO Li1，ZHANG Yu2
，LI Jinling1
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Abstract：Based on the delay and delay rate data from Very Long Baseline Interferometry（VLBI） and range and Doppler

data from United S or X band system，the precise point positioning in real-time mode is got and the lunar lander or rover in quasi-

real time mode with joint statistical method is obtained. With the precise point positioning method，free of various mechanical

constraint， the three-dimensioned position information in real-time can be obtained. In special orbit maneuvering period such as

braking at perilune and CE-4 relay satellite entering the Halo orbit at the Lagrangian translation point L2 of Earth-lunar system， the

six-orbit elements at real time can be obtained as well， offering a rapid reference for the project. Using the joint statistical method

and lunar height constraint，the position of CE-3 lander arrives at 100- meter external coincidence accuracy. With VLBI Same Beam

 Interferometry（SBI） phase-delay measurements，the external coincidence accuracy of the CE-3 rover reached at 1- meter

level. It will promote more positioning analysis in the future deep space exploration projects.

Keywords：positioning reduction；VLBI；real-time monitoring

Highlights：
●　In special orbit maneuvering period such as braking at perilune and CE-4 relay satellite entering the Halo orbit at the
Lagrangian translation point L2 of Earth-lunar system， the six-orbit elements can be got at real time as well，offering a rapid
reference for the project.
●　Using the joint statistical method and lunar height constraint，the position of CE-3 lander reaches at 100 m external
coincidence accuracy.
●　With VLBI Same Beam Interferometry（SBI） phase-delay measurements， the external coincidence accuracy of the CE-3
rover reaches at 1- meter level.
●　With the precise point positioning method，free of various mechanical constraint， the three-dimensioned position
information can be got in real-time，with the advantage of rapid respond and high accuracy， providing the important reference
for the project.
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