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Fig. 1 A state transition graph for an Instrument timeline
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1:  procedure compute-cost (s, s')

2 PA < FindAllPaths( s, s'")

3 do {

4 Choosepa={s=s, ,.5,=s'}ePAd Vs epak=12,.

5: PA := PA\ {pa}

6 for each transition s .5, , | € pa, C, is the set of transition conditions

7 transition-cost:=1

8 s., € C, is one of the transition condition, s, is the related initial state
9: cost (s,»,.,):= transition-cost + Zcompute-cost(s q, s ;)

10: cost(pa)= Xcost(s,s,.,) Vs, Epa,n=012,..k-1

11: 1(WhileP4 # ¢)
12:  cost(s,s')=min(cost( pa))
13:  return cost (s, s')
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Fig. 2 The procedure of compute-cost algorithm
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procedure Find-Plan (1,G)
Let 7 be the current partial plan, P be a set of candidate plans
Let /() be the current set of flaws
m=Lf(n):P=G
While (P~ ¢) do {
for each p P

compute 1*“( p) =X cost™(s,)Vs, € p

select p . with minimal heuristic cost 7P

R A U i

m=nUp,,
f(mn):=getFlaws(m)
if /(m)= ¢ then

return n

_ = = =
w R = o

else
choose fef(m)
‘P: = Refinement (n,f )}

return failure

—
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Fig. 3 Heuristic planning algorithm
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Table 1 Summary of subsystems in Mars Rover domain
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Fig. 4 Computational results of runtime curves

600

500

400 -

300

MRIF

200

100 - @ - EUROPA2
—o— A RAHIE

A B C D E F G H 1 ]
TR A
K5 BURD S Rl

Fig. 5 Computational results of planning steps
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Fig. 6 Experimental results on explored plans
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Heuristic Search Based on State Transition Graphs for Deep Space Task Planning

JIN Hao "2, XU Rui'?, CUI Pingyuan'?, ZHU Shengying'
(1. Institute of Deep Space Exploration, Beijing Institute of Technology, Beijing 100081, China:

2. Key Laboratory of Autonomous Navigation and Control for Deep Space Exploration, Ministry of Industry and Information Technology ,
Beijing 100081, China)

Abstract: In view of the complex system and coupling operation constraints of deep space probes, state transition graphs are

defined based on the timeline knowledge representation. With the analysis of involved constraints in task planning, the computation

procedure of cost estimate for state transition is designed. In addition, the state transition graph based heuristic planning algorithm

is proposed and is able to prune irrelevant search space, and accelerate the searching process. Simulation results indicate that the

algorithm can reduce unnecessary planning steps and make certain improvements in planning efficiency.

Key words: task planning; heuristic search; state transition graph

High lights:

® A task planning approach for deep space probes is proposed.

® A cost estimation strategy based on state transition graphs is proposed.

® A heuristic search algorithm based on state transition costs is designed.
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