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Table 1 AV to correct A2 = 1°0r Ai = 1°at different argument
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Table 3 Orbit maneuver strategy of 5 impulses for formation
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Table 4 Orbit elements of two microsatellites
AR B
EPOCH 2018-06-05T18:01:06 2018-06-05T18:01:06
a/km 6439 906.4 64472872
E 0.6835 0.683 5
i/° 39.443 3 40.444 3
QF 326.172 8 327.098 0
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Table 6 Comparison of maneuver strategies of far distance
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Table 7 Maneuver strategies of medium distance & close
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Fig.3 Formation relative motion of 3 sections
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Flight Formation Control in Lunar Highly Elliptical Orbit Based on
Rendezvous Mode

LI Gefei'?, SHENG Qingxuan'?, LIU Yong'~

(1. Beijing Aerospace Control Center, Beijing 100094, China;
2. Aerospace Flight Dynamics Laboratory, Beijing 100094, China)

Abstract: After entering lunar highly elliptical orbit, two microsatellites conduct several orbit maneuvers and finally
implement flight formation with the relative range from thousands of kilometers to within 10 kilometers with the support of ground
monitoring and control. For the highly elliptical orbit around the moon, the orbit control strategy of formation flight at the
rendezvous endpoint is designed based on the multi-impulse rendezvous mode. The linear guidance method is used to iteratively
calculate the precise orbit control parameters. A sequential optimized five-impulse orbit maneuvers strategy is designed. Through
the progressive segmentation controls of long distance approach, medium distance adjustment and close range capture, the relative
status of the orbit planes, arch lines, shapes and phases of the two orbits are corrected. Under the condition of the lunar highly
elliptical orbit, the close distance formation of the two microsatellites is achieved with the relative motion trajectory being gradually
stable.

Key words: lunar highly elliptical orbit; formation: rendezvous; orbit control

High lights:

e The serial formation flight of two microsatellites around lunar highly elliptical orbit is realized by using rendezvous control

mode.

® A sequence-optimized 5-pulse formation orbit maneuver strategy is designed.

e The first impulse performs orbital plane correction, the second impulse uses a radial impulse to correct orbital arch line,

and the third, fourth, and fifth impulses perform orbital in-plane rendezvous.

e Segmentation control is adopted, including long range approach, medium range adjustment and close range formation

capture.

e Through multiple progressive orbital maneuvers, the close distance formation in lunar highly elliptical orbit is achieved

with the relative motion trajectory being gradually stable.
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