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小推力转移燃料消耗估计的机器学习方法
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摘 要：深空探测任务设计初段往往需要求解复杂的全局优化问题。小推力轨迹的设计与优化问题精确求解较为

复杂，求解速度较慢。由于计算能力与时间要求，不可能在全局优化的过程中对每一个方案都进行精确的小推力数值

求解，所以在全局优化阶段需要对小推力转移进行快速准确地估计。采用机器学习的方法，对燃料最优小推力转移的

燃料消耗进行了估计，其结果明显优于目前最为常用的Lambert估计方法。根据轨道描述方法的不同以及是否带有

Lambert估计特征，采用不同的特征组合进行机器学习，分析结果发现带有Lambert估计特征的春分点轨道根数的特征

组合为较好的机器学习特征组合。可为未来深空探测任务轨道设计提供参考。
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引 言

电推进与传统的化学推进相比，具有比冲高、燃

料质量消耗小等优点，探测器可以携带更多的有效载

荷。美国的“黎明号”探测器、日本的“隼鸟号”探

测器等都采用了电推进方式。在探测任务的初始设计

阶段，往往有着大量的可选轨道设计方案，每一届的

国际轨道竞赛（Global Trajectory Optimization Com‐

petition，GTOC）和国内轨道竞赛的问题，任务设计

期初需要求解复杂的全局优化问题。

小推力轨迹的设计与优化问题，相对于脉冲轨迹

的设计与优化问题，求解较为困难，求解速度也较

慢。由于计算能力与时间要求，不可能在全局优化的

过程中对每一个方案都进行精确的小推力数值求解，

这就需要对小推力转移进行快速准确的估计。最重要

的是快速准确地估计小推力转移的燃料消耗。

考虑交会问题的燃料最优小推力转移。目前最为

常用的估计方法，是用双脉冲转移Lambert问题的速

度增量来近似估计小推力转移的速度增量，但是二者

往往有着较大的误差。除此之外，Gatto等提出了基

于 Edelbaum 近似的估计方法[1]，李海洋等同样基于

Edelbaum提出了考虑 J2摄动下小推力多圈转移的估

计方法[2]。

本文提出一种基于轨道根数特征的机器学习的估

计方法。机器学习作为人工智能的一个研究领域，在

轨迹优化领域也有应用[3-4]。Hennes等[5]研究了机器学

习方法估计小推力燃料消耗，比较了不同的机器学习

方法对估计结果的影响，但是在机器学习方法中，特

征的选择对结果影响更为基础与重要，主要创新点是

研究不同的特征组合对于估计结果的影响。

本文使用第 7届国际轨道竞赛的小天体数据[6]，

生成小推力转移数据库供机器学习使用，选择不同的

特征组合作为机器学习的特征，学习完成后即可对燃

料最优小推力转移燃料消耗进行准确快递估计。不同

的特征组合结果不同，但都明显优于 Lambert 估计

方法。

1 小推力转移数据库生成

1.1 Lambert估计

使用第7届国际轨道竞赛的小天体数据，随机选

取出发天体A1和到达天体A2，在[0，3 000]天内随机

确定出发时刻 ts、在[100，300]天内随机确定转移时

间Δt，在[0.5，1] × minitial内随机确定初始质量ms。燃

料最优小推力问题较难求解，不可能每次随机生成的
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转移都可以采用小推力实现。所以，首先求解双脉冲

Lambert问题获得转移的速度增量，满足一定条件的

转移再使用小推力实现。

若求解双脉冲 Lambert 问题所得的速度增量为

ΔVL，小推力能产生的最大推力为 Tmax，如果满足

下式

ΔVL < c
Tmax

ms

Δt (1)

则认为该段转移可以转为小推力求解。式中 c的

范围一般取0.5～0.8之间，本文计算中取0.7。

Lambert估计的燃料消耗为

ΔmL = ms (1 - exp
-ΔVL
Isp g0

) (2)

1.2 燃料最优小推力转移

经过双脉冲Lambert估计筛选后，可行的转移即

可进行燃料最优小推力求解[7]。

探测器初末状态采用春分点轨道根数描述为
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x1 = a ( )1 - e2

x2 = ecos ( )Ω + ω

x3 = esin ( )Ω + ω

x4 = tan ( )i/2 cosΩ

x5 = tan ( )i/2 sinΩ

x6 = Ω + ω + f

(3)

则小推力问题的动力学方程为
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ẋ = M
Tmaxu

m
α + D

ṁ = - Tmax

Isp g0

u
(4)

其中：M为 6×3的矩阵，未列元素为 0；D为 6×1的

向量。

对于交会问题，约束条件为
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x ( )t0 = xs

m ( )t0 = ms

x ( )tf = x f

(5)

对于燃料最优问题，优化指标为

J =
Tmax

Isp g0
∫t0

tf

udt (6)

本文采用间接法求解燃料最优小推力问题。为了

更加快速有效地求解协态变量初值，采用对数同伦方

法与协态变量归一化技术[7]。

引入对数同伦参数ε和归一化协态变量λ0，指标

函数变为

J = λ0

Tmax

Isp g0
∫t0

tf {u - εln [u (1 - u) ]}dt (7)

该最优控制问题的哈密顿函数为

H = λT
x (M Tmaxu

m
α + D) - λm

Tmaxu

Isp g0

+

λ0

Tmax

Isp g0

{u - εln [u (1 - u) ]}
(8)

根据极大值原理，可以求得最优控制率为
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α = -
M T λ

 M T λ

u =
2ε

ρ + 2ε + ρ2 + 4ε2

(9)

其中：开关函数ρ的表达式为

ρ = 1 - Isp g0  M T λ

λ0m
- λm

λ0

(10)

协态方程为
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m2  M T λ

(11)

燃料最优小推力转移问题转换为求解协态变量初

值的两点边值问题，可以使用打靶法求解。打靶方

程为

ì

í

î

ïï
ïï

Φ ( )z = é
ë

ù
ûx ( )tf - x f,λm ( )tf , λ ( )t0 - 1

T

= 0

z = λ ( )t0

(12)

当同伦参数 ε从 1减到 0，问题即变为燃料最优

问题。

2 机器学习方法

机器学习方法的本质可以理解为函数的拟合方

法。对于燃料最优小推力转移问题，其燃料消耗是初

末轨道参数、初始质量与转移时间的函数，但是该函

数目前无法使用数学推导解析地获得准确形式。机器

学习的过程则是构造拟合函数的过程，学习完成后构

造的拟合函数可以用来描述相应的数学问题。

本文中的数学问题则是在二体太阳引力场中，给

定小推力的最大推力和比冲，已知某组初末轨道参

数、初始质量与转移时间，如何求解燃料消耗。只要

满足该数学问题的场景，均可以采用本文得到的机器

学习拟合函数进行燃料消耗估计，但是对于不同的场

景，函数的拟合度可能不同，在实际使用过程中，还
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需要根据具体场景选择合适的学习数据。使用机器学

习方法进行函数拟合的优势在于，机器学习方法对于

复杂的函数关系可以有很好的描述，而解析公式必定

会由于某些简化从而失去复杂函数关系的某些特性。

机器学习有着较为成熟的工具包，本文计算采用Py‐

thon语言的 scikit-learn工具包[7]，参考为文献[5]中得

到的结论使用Gradient Boosting回归器，最大深度选

择为8。

根据第 2节的计算方法，一共生成 6万组燃料最

优小推力转移，每组转移中包含了初末轨道参数、转

移时间、初始质量和燃料消耗，其中，初末轨道参

数、转移时间、始质量是基本变量，燃料消耗是希

望通过机器学习获得的拟合函数的函数值。其中 5

万组用来进行学习燃料最优小推力转移燃料消耗，其

机器学习标签即为燃料消耗质量；1万组用来进行检

验机器学习估计的燃料消耗与小推力精确计算得到的

燃料消耗的差异。

机器学习最重要的是特征参数的选择。燃料最优

的小推力转移中，燃料消耗质量由探测器初始质量、

转移时间，初始位置速度和末端位置速度决定。表1

参数可以作为机器学习的特征。

本文选用表 2中的 7种特征组合进行分析，组合

1表示的是利用位置速度的轨道描述方法作为特征，

组合2表示的是利用经典轨道根数的轨道描述方法作

为特征，组合3表示的是利用春分点轨道根数的轨道

描述方法作为特征，组合 4～6是在之前 3组的基础

上，再加上Lambert估计的速度增量和燃料消耗作为

特征。组合7是在组合6的基础上考虑轨道积分中的

能量与动量。

为了更为清楚地判断估计结果是否准确，采用估

计燃料消耗与实际燃料消耗的均方差和均方根差作为

估计精度的衡量标准。

3 算 例

本文使用第7届国际轨道竞赛的小天体数据，共

16 256个天体，轨道采用二体开普勒轨道，初始轨

道根数的时刻为 56 800MJD。探测器的初始质量为

2 000 kg，小推力产生的最大推力为 0.3 N，比冲为

3 000 s。每组燃料最优小推力转移生成中，从16 256

个天体中随机选取出发天体和到达天体，再随机确定

出发时刻，转移时间和初始质量，根据第2节中的方

法判断并生成小推力转移。使用该方法共生成6万组

数据，其中1万组用来检验估计结果的小推力转移轨

迹信息如表3所示。

下面对Lambert估计和 6种特征组合方式的机器

学习结果进行分析，结果如表4。

表1 可选特征

Table 1 Possible attributes

特征

rvs/coes/ees

Δrv/Δcoe/Δee

ΔE，Δh

Δt

ms

ΔVL

ΔmL

解释

初始位置速度/经典轨道根数/
春分点轨道根数

末端与初始位置速度/经典轨道根数/
春分点轨道根数之差

末端与初始轨道能量与动量差异

转移时间

初始质量

Lambert估计的速度增量

Lambert估计的燃料消耗

表2 6种特征组合

Table 2 Six combinations of features

组合方式

组合1

组合2

组合3

组合4

组合5

组合6

组合7

特征

rvs，Δrv，Δt，ms

coes，Δcoe，Δt，ms

ees，Δee，Δt，ms

rvs，Δrv，Δt，ms，ΔVL，ΔmL

coes，Δcoe，Δt，ms，ΔVL，ΔmL

ees，Δee，Δt，ms，ΔVL，ΔmL

ees，Δee，Δt，ms，ΔE，Δh，ΔVL，ΔmL

表3 小推力转移轨迹信息

Table 3 Information of low-thrust transfers

参数

Δa/AU

Δe

Δi/（°）

ΔΩ/（°）

Δω/（°）

Δf/（°）

Δt/d

ms/kg

Δm/kg

最大值

0.618 0

0.207 7

4.311 5

359.747 9

359.085 6

356.794 8

299.999 2

1998.280 0

169.038 0

最小值

9×10-6

1.1×10-5

5.747 7×10-5

2.816 4×10-3

3.448 6×10-4

9.368 7×10-3

103.448 1

1 000.012 0

28.052 0

平均值

0.104 0

0.034 6

0.943 3

71.825 3

95.559 8

99.839 2

266.811 2

1268.194 4

84.002 9
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综合来看，燃料最优小推力转移燃料消耗机器学

习估计方法明显优于Lambert估计方法。机器学习估

计方法中，带有Lambert估计的速度增量和燃料消耗

作为学习特征的特征组合明显更优。组合1、2、3的

特征是构建一段小推力转移所需要的最基本的参数，

但是作为机器学习的特征，为了得到更准确的估计结

果，这些基本参数还需要额外信息，比如Lambert估

计的结果。

对于机器学习方法来说，Lambert估计的结果提

供了一个学习的方向，使得机器可以在Lambert估计

结果的基础上，更加快速准确地逼近真实值；而对于

没有Lambert估计结果的特征组合，机器在学习过程

中完全凭借转移所需的最基本参数，可能需要耗费更

多的精力去学习，学习效果也相对较差。

对于不同的轨道描述方法，无Lambert估计特征

的特征组合结果非常接近，有Lambert估计特征的特

征组合中，春分点轨道根数的估计结果最优，经典轨

道根数的估计结果次优。机器学习最重要的是特征参

数的选择，特征的选择决定了机器学习到的是问题的

表面还是本质。轨道根数的描述方法，相比于位置速

度表示法，更能体现出轨道的本质属性，轨道根数表

示法更能够直接表现出2个轨道的差异，所以通过轨

道根数学习得到的结果要明显优于通过位置速度学习

得到的结果。春分点轨道根数相比于经典轨道根数无

奇异，更适合于小倾角近圆轨道，而本文使用的数据

库中小天体多为小倾角近圆轨道，故结果最优。二体

轨道中轨道积分应该是最能够反映轨道本质的参数，

但是在本文中考虑轨道积分后的结果并无明显改观，

仍然需要进一步进行探究。

特征组合3和特征组合6的误差分布图如图1～2

所示，图1中横坐标为机器学习估计值与实际值的误

差，纵坐标为个数，蓝色表示机器学习估计结果，橘

红色表示Lambert估计结果。图 1中特征组合 3的机

器学习结果误差虽然平均值接近 0，但是Lambert估

计的误差分布更为集中，图2中特征组合6的机器学

习结果具有更优的误差平均值和集中程度。

表4 估计结果比较

Table 4 Estimation results

比较种类

Lambert估计

特征组合1

特征组合2

特征组合3

特征组合4

特征组合5

特征组合6

特征组合7

均方差/kg

13.55

10.46

10.56

10.42

4.07

3.69

3.35

3.34

均方根差/kg

15.16

12.93

12.97

12.80

5.71

5.30

4.98

4.97

学习时间/s

38.30

41.12

41.64

46.45

52.45

49.20

49.74

图1 特征组合3的误差分布

Fig. 1 Error distribution of Features III
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4 结 论

本文采用机器学习的方法对燃料最优小推力转移

的燃料消耗进行估计，比目前最为常用的Lambert估

计方法结果明显更优。不同的特征组合会影响机器学

习的结果。相比于初末轨道、初始质量与转移时间的

特征组合，增加了Lambert估计结果的特征组合估计

结果更优。在位置速度、经典轨道根数、春分点轨道

根数3种轨道描述方法中，春分点轨道根数描述方法

作为特征的机器学习估计结果最为准确。故带有

Lambert估计特征的春分点轨道根数的特征组合为较

好的机器学习特征组合。

本文只考虑了不同特征对估计结果的影响，不

同的机器学习算法与轨道描述方法之间的关联同样

也会对估计结果产生影响，未来可以考虑研究使用

更为准确的特征组合，以及不同的机器学习算法进

行估计。
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图2 特征组合6的误差分布

Fig. 2 Error distribution of features VI
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Machine Learning Method of Estimation for Fuel Consumption of

Low-Thrust Transfers

LI Haiyang，BAOYIN Hexi
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Abstract：It is often necessary to solve complex global optimization problems in the preliminary deep space mission design.

The exact solution to the design and optimization of low-thrust trajectory is more difficult and time-consuming， because of the

limitation of calculation ability and time， it’s impossible to solve each low-thrust problem accurately using numerical methods in

the global optimization process. In this paper，we propose a machine learning method to estimate the fuel consumption for fuel-

optimal low-thrust transfer. The results show the performance is better compared with the Lambert method which is commonly used

at present. Different features are used for machine learning，and the major differences are different orbit description and whether

Lambert estimation result is considered. The feature with equinoctial orbit elements and Lambert estimation is the best feature. It

can provide reference for future orbit design of deep space exploration mission.

Key words：low-thrust；fuel optimal；fast estimation；machine learning

High lights：

● A machine learning method is proposed to estimate the fuel consumption of low-thrust transfer.

● The effect of different features for machine learning is analyzed.

● The feature with equinoctial orbit elements and Lambert estimation is the best feature.
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