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Table 3 Information of low-thrust transfers
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Table 4 Estimation results
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Machine Learning Method of Estimation for Fuel Consumption of
Low-Thrust Transfers

LI Haiyang, BAOYIN Hexi
(School of Aerospace Engineering, Tsinghua University, Beijing 100084, China)

Abstract: It is often necessary to solve complex global optimization problems in the preliminary deep space mission design.
The exact solution to the design and optimization of low-thrust trajectory is more difficult and time-consuming, because of the
limitation of calculation ability and time, it’s impossible to solve each low-thrust problem accurately using numerical methods in
the global optimization process. In this paper, we propose a machine learning method to estimate the fuel consumption for fuel-
optimal low-thrust transfer. The results show the performance is better compared with the Lambert method which is commonly used
at present. Different features are used for machine learning, and the major differences are different orbit description and whether
Lambert estimation result is considered. The feature with equinoctial orbit elements and Lambert estimation is the best feature. It
can provide reference for future orbit design of deep space exploration mission.

Key words: low-thrust; fuel optimal; fast estimation; machine learning

High lights:

® A machine learning method is proposed to estimate the fuel consumption of low-thrust transfer.

® The effect of different features for machine learning is analyzed.

® The feature with equinoctial orbit elements and Lambert estimation is the best feature.
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