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Ground Experimental Pressure Control Investigation of Thermodynamic Vent System

LIU Xin, ZHANG Xiaoyu
(China Academy of Launch Vehicle Technology, Beijing 100076, China)

Abstract: Cryogenic propellants are considered to be the most economic and efficient chemical propellant for the space
entering and orbit transfer, due to its high specific impulse and non-pollution. And they are also the first choice of propellant for
future human lunar exploration, Mars exploration, and deeper space exploration. Thermodynamic vent system (TVS) is the key
technology for long-term on-orbit storage of cryogenic fuel. In present study, one ground experiment is established to investigate the
pressure control performance of TVS. The simulant fluid HCFC123 is selected to be the experiment fluid and to verify the efficient
of TVS in the ground. The tank pressure variation and fluid temperature change are respectively studied during the tank self-
pressurization, the injection mixing depressurization and active refrigeration process. The refrigeration capacity supplied by the
TVS heat exchanger and the thermal stratification during different phases are specially illustrated. The present experiment proves the
effectiveness of the pressure control performance by means of TVS. When compared to the direct venting method, TVS has
recovered more than 41% venting loss, which could provide references for the development of cryogenic propellant thermodynamic
vent system.

Key words: cryogenic propellants; boil-off control; thermodynamic vent system

High lights:

e Experiments on TVS are carried out with HCFC123 as working fluid.

e The variation of the pressure and temperature of the tank are obtained when TVS is working.
e TVS pressure control effect has been verified.
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(L#255285T0)
Research on the Ground Test Technology of Lunar Landing and Ascending

REN Depeng', LIQing', LIU Zhenchun’, ZHANG Xuhui'

(1. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China;
2. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China)

Abstract: Reliable and safe lunar landing and ascending is the basic condition for lunar exploration. It is also a key technology
in the probe development, therefore ground test is required. As the environment on the ground are different from that on the moon,
the operation features of the probe on the ground are also different. The design and the implement of the ground test are difficult. The
design points of the lunar landing and ascending and the critical factors of the ground test are analyzed. The existing defects in
current test technology are pointed out. A ground test verification scheme using the impetus of the probe itself for landing and
ascending is proposed, and its feasibility is validated by the dynamic simulation. The extended application of the scheme is putted
forward. The related research provides reference for the future development of Chinese lunar or planetary probes.

Key words: lunar probe; landing and ascending; test technology

High lights:

e The design points of lunar landing and ascending and the key factors of related ground test were analyzed.

e A ground test scheme was proposed, and its feasibility was validated by simulation.

e The ground test scheme was valuable for validation of lunar landing point adjustment design and sub-orbital spacecraft design.
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