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Table 1 Payloads of Chang’e-1
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Table 2 Payloads of the lander of Chang’e-3
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Table 6 Payloads of the rover of Chang’e-4
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Table 7 Main technical specifications of CCD camera
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Table 8 Main technical specifications of interferometric
imaging spectrometer
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Table 9 Main technical specifications of laser altimeter
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Fig.3 Layout of the laser altimeter
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Table 10 Main technical indexes of gamma ray spectrometer
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Table 11 Main technical indexes of X ray spectrometer
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Table 12 Main specifications of microwave detector
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Fig. 9 Global distribution of regolith layer thickness inverted by lunar brightness temperature at night
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Table 13 Main technical specifications of Solar energetic
particle detector
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Fig. 10 Layout of Solar high energy particle detector
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Fig. 11 Layout of Solar wind ions detector
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Table 14 Main technical indexes of Solar wind ion detector
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Fig. 12 The distribusion of Solar wind ion flux fiched by SWID on the
dayside of the Moon in Dec. 2007
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Table 15 The main technical indexes of topographic camera
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Fig. 14 Lunar based telescope
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Table 16 The main technical indexes of lunar based telescope
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Fig. 13 Picture taken by landform camera of Chang’e-3
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Table 17 The main technical indexes of extreme ultraviolet

camera
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Fig. 15 Layout of extreme ultraviolet camera
PATAE 55 AR & VoA SREL T K 3R A5 B 144
SR ER, AR ERE B TR SR T EE
ZoRl. B 16X G 42013412 H 25 H 3R B — 7k
KRG TIREE.

2013-12-25 00:51

-

CIOMP EUVC

Bl 16 HRERSMANUIRE R HUERSE 3 7 R B R
Fig. 16 Earth plasma image taken by EUV camera
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Fig. 17 Imager and infrared spectrometer
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Table 18 Main technical indexes of infrared imaging

spectrometer

HARFER Y e
0.45~0.95 (A] Wi 20 4hidiE )

e FEl/um
0.90~2.40 G AME B A SMNEE)
) 2~10 (A WLIELL4MEIED
Jei 4 HE3/nm

3~12 GELAMER L AMNEE)
6 x 6 (A HLITZLAMEIE)

2 %2 (ERLLAHME L AMNETE
256 x 256 ("] WAL £LAhmiE )

Wl ()

EER Ve ST B \
1 GELAAMER LA AMNEED
A /bt 10
1B 5 BATRDX 6 48 SR EL T 380 X 55 7 7 2 ik

B, FTXHZX 00 AR WA BT . B 18
FE20134F 12 23 HiX & 524 SR E I T WL i B U
Hp—MEEEEE.

5) RLFBUR XS R TE A

WL R X 28 RE AR A 3R 52 WOR IR UK 7 R
XGek, FExtERICREAT oM. TTHTFXNARE A,
HEE. BT 48 0 M. BT B0R X 28 38 A 4R
ki, wRAEMAMBENME AT . & FEHMK
PE s X 2R PRI 25 A0 A B OK R B LR, AR R A
WE 19F7R, FERARIBRWER 1978, $ATHES
[EZA AR AR T R X s e R S . B 20084%
#520134F12 H 25 HRELPM) i XG99 26 15 ]

6) W H ik

DU H 5RO R 2k b H R AR 2 SRR
W FTAREEER: I 5 I8 RS A= A 88 5 i To 0
ERE KT, GRS R L H I R, (551 H 3
MAENRERFERE S, WSEEARY 2. TR
JRAZEF T WEE . EASE, KRR ES



506 TR S R 2 3 ¥4k

) BB AU o 3R MAOR R B WAL 2% S S RIS 15 5 3R MEAR, 13RS AT E XN AL L2 A 72 iRz
FHE L BRI R, I I RN AR AT . AR FAOMRAFE R . AR EERARIEAR IR 200771

40 60 80
B

B 18 LLAMRARI G SGREU AT WG B S (373 BE 635 nm) , KARF A (128, 160) [
Fig. 18 Image (band 37, 635 nm) and spectrum of pixel (128, 160) taken by imager and infrared spectrometer

£

BI19 BT BORX AT ZaE X
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Table 19 Main technical indexes of particle excited X ray

spectrometer
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Table 20 Main technical indexes of lunar radar
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Achievements and Prospect of Payloads Technology in Chinese

Lunar and Deep Space Exploration

SUN Huixian, LI Huijun, ZHANG Baoming, ZHOU Changyi, XUE Changbin, ZHU Yan,
XU Xinfeng, LIJun, DU Guoqing

(National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China)

Abstract: Payloads are the direct tools for achieving science objectives, and their technical approach and level impacts the
implementation degree of science objectives. Science objectives and payloads configuration for Chinese lunar and deep space
exploration are reviewed. Technical realization, operation results and achievements of some remote sensing payloads of the
Chang’e-1 and Chang’e-2 lunar orbiting probes are introduced, including the stereo camera and interferometer spectrometer
imager, laser altimeter, microwave radiometer, gamma and X-ray spectrometer, Solar high energy particle detector and Solar
wind ions detector. The technical realization, operation results and achievements of some in-situ and rover exploration payloads of
the Chang’e-3 lunar lander and rover are introduced, including the terrain camera, lunar based telescope, extreme ultraviolet
camera, imager and infrared spectrometer, alpha particle X-ray spectrometer and lunar penetrating radar. The development trends

of the payloads technology is analyzed, and the development of Chinese payloads technology is prospected.

Key words: lunar and deep space exploration; payload; remote sensing: in-situ exploration; rover exploration

High lights:

e Science objectives and payloads configuration for Chinese lunar and deep space exploration are reviewed.

e Technical realization, operation results and achievements for some of the remote sensing payloads of the Chang’e-1 and
Chang’e-2 lunar orbiting spacecrafts are introduced.

e Technical realization, operation results and achievements for some of the in situ exploration and rover exploration payloads of
the Chang’e-3 lunar lander and rover are introduced.

e The development tendency of payload technology is analyzed.

e The development of Chinese payload technologies is prospected.
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