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Table 1 Material parameters of the truss and cable-net
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Modular Cable-Truss Antenna
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(1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;

2. Aerospace System Engineering Shanghai, Shanghai 201108, China)

Abstract: Inrecent years, large deployable space structures such as modular space deployable antenna has great development

potential to meet the nation’s requirements in future space technology. The modular space deployable antenna is a rigid-flexible

coupling multi-body system mainly composed of flexible supported truss, cable-net structure, metal mesh reflector and rigid joints.

In order to indicate the dynamic response of the space deployable antenna, an asymptotic iterative form-finding method is proposed

based on the force density method, and the rigid-flexible truss is modeling in the frame of the absolute nodal coordinate formulation.

Besides, the cable-net structure is modeling with NURBS (Non-Uniform Rational B-Splines) cable element. Further more, ,

the dynamic differential algebraic equations of the rigid-flexible system are established based on the first Lagrangian’s equation,

and the generalized -o method is used for the high-performance numerical integration. Finally, the dynamic deployable response of

the modular cable-truss antenna is studied.

Key words: cable-truss antenna; form-finding method; deployment dynamics; isogeometric analysis
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