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Fig. 1 Illustration of the simplified spacecraft networking
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Design of Deep Space Autonomous Navigation System Based on Spacecraft
Networking

ZHENG Wei, ZHANG Lu, WANG Yidi

(School of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract: In order to reduce the heavy burden on the ground-based network, as well as increasing navigation efficiency for
deep space explorers, a method of autonomous navigation based on Spacecraft Networking is proposed in this article. The network
comprises two types of spacecraft, namely, basis spacecraft and customer spacecraft. The basis spacecraft implement autonomous
navigation by observing X-ray pulsar, inter-ranging, etc. The basis spacecraft provides the standard basis for the whole network,
and a customer spacecraft determines its position by communicating with the basis spacecraft or with the other customer spacecraft.
The specific scheme of Spacecraft Networking is illustrated by an example of Earth to Moon transfer mission. The configuration
scheme and the navigation method of the basis spacecraft are analyzed in this paper, and the navigation method for single and multi-
tiered customer spacecraft is presented in this paper. Simulations demonstrate that by measuring X-ray pulsar and inter-ranging
links, the basis spacecraft can reach the accuracy of 20 m. When observing the basis spacecraft, the customer spacecraft in Earth to
Moon transfer orbit can reach the accuracy of better than 30 m. Autonomous navigation based on Spacecraft Networking is feasible
and can significantly benefit China’s Space-based navigation system.

Key words: spacecraft networking; autonomous navigation; pulsar; Earth to Moon transfer mission
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Autonomous Navigation of Three-Body Trajectory Based

on Asymmetric Gravity Field

WANG Yamin"?, LIU Yinxue’, JIANG Jun"“, SUN Yukun"’, ZHANG Yonghe"*

(1. Shanghai Engineering Center for Microsatellites, Shanghai 201210, China;
2. Key Laboratory of Microsatellite, Chinese Academy of Sciences, Shanghai 201210, China;
3. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract: In this paper, the autonomous orbital determination method with the background of communication relay net for
the Moon is investigated. Two satellites, distributing on a lunar polar orbit and an Earth-Moon L2 Halo orbit, are proposed to cover
the far side of the Moon and the lunar polar area. Based on the asymmetric three-body gravity field, the absolute orbital
determination can be done by the sole satellite-satellite ranging. The autonomous orbital determination will contribute significantly to
the autonomous management of deep space spacecraft. Numerical simulation indicates that the position error and velocity error can
be reduced to the order of 100 m and l1cm/s respectively. This orbital determination method can be expanded to the autonomous
navigation of multiple satellites movements around an irregular asteroid.

Key words: satellite-to-satellite tracking; autonomous navigation; Earth-Moon system: communication relay; deep space
exploration
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