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Abstract ; Navigation is one of the core technologies for Mars landing. In this paper, the Mars landing navigation
capabilities and development trends of autonomous navigation are firstly analyzed, concentrating on the landing environment
characteristics and technological challenges. And the research status of autonomous navigation scheme is summarized
subject to the specialties and requirements of each flight phase during Mars landing. Furthermore, an in-depth analysis of
the latest research progress in autonomous navigation schemes is conducted in the respects of design and configuration of
schemes, model building and simulation, navigation performance analysis and so on. Then the required navigation precision
on each interface point of flight phases is obtained by comprehensively simulating the whole progress of Mars landing.
Finally, the conceive of a “progressive three-stage” autonomous navigation scheme for Mars landing is proposed while
considering the present situation and developing trend of technology, which would provide useful data for the design and
demonstration of navigation scheme for future Mars landing.
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NASA’ s successful Mars landing missions
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Fig.2 Integrated navigation scheme for Mars final

approach phase based on X-ray pulsar
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Fig.3 Navigation performances of different navigation

schemes for Mars final approach
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